Browse wiki

From MurrayWiki
Jump to: navigation, search
Distributed Receding Horizon Control with Applications to Multi-Vehicle Formation Stabilization
Abstract We consider the control of interacting sub …
We consider the control of interacting subsystems whose dynamics and constraints are uncoupled, but whose state vectors are coupled non-separably in a single centralized cost function of a finite horizon optimal control problem. For a given centralized cost structure, we generate distributed optimal control problems for each subsystem and establish that the distributed receding horizon implementation is asymptotically stabilizing. The communication requirements between subsystems with coupling in the cost function are that each subsystem obtain the previous optimal control trajectory of those subsystems at each receding horizon update. The key requirements for stability are that each distributed optimal control not deviate too far from the previous optimal control, and that the receding horizon updates happen sufficiently fast. The theory is applied in simulation for stabilization of a formation of vehicles.
stabilization of a formation of vehicles.  +
Authors William B. Dunbar and Richard M. Murray  +
ID 2004h  +
Source Submitted, <i>Automatica</i>  +
Tag dm04-automatica  +
Title Distributed Receding Horizon Control with Applications to Multi-Vehicle Formation Stabilization +
Type Technical Report  +
Categories Papers
Modification date
This property is a special property in this wiki.
27 November 2016 00:54:42  +
URL
This property is a special property in this wiki.
http://www.cds.caltech.edu/~murray/preprints/dm04-automatica.pdf  +
hide properties that link here 
Distributed Receding Horizon Control with Applications to Multi-Vehicle Formation Stabilization + Title
 

 

Enter the name of the page to start browsing from.