End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks

From MurrayWiki
Jump to: navigation, search
Title End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks
Authors Richard Cheng, Gabor Orosz, Richard M. Murray, Joel W. Burdick
Source To appear, 2019 AAAI Conference on Artificial Intelligence
Abstract Reinforcement Learning (RL) algorithms have found limited success beyond simulated applications, and one main reason is the absence of safety guarantees during the learning process. Real world systems would realistically fail or break be- fore an optimal controller can be learned. To address this issue, we propose a controller architecture that combines (1) a model-free RL-based controller with (2) model-based controllers utilizing control barrier functions (CBFs) and (3) on- line learning of the unknown system dynamics, in order to ensure safety during learning. Our general framework lever- ages the success of RL algorithms to learn high-performance controllers, while the CBF-based controllers both guarantee safety and guide the learning process by constraining the set of explorable polices. We utilize Gaussian Processes (GPs) to model the system dynamics and its uncertainties.

Our novel controller synthesis algorithm, RL-CBF, guaran- tees safety with high probability during the learning process, regardless of the RL algorithm used, and demonstrates greater policy exploration efficiency. We test our algorithm on (1) control of an inverted pendulum and (2) autonomous car-following with wireless vehicle-to-vehicle communication, and show that our algorithm attains much greater sample efficiency in learning than other state-of-the-art algorithms and maintains safety during the entire learning process.

Type Conference paper
URL http://www.cds.caltech.edu/~murray/preprints/comb19-aiaa.pdf
Tag comb19-aiaa
ID 2018e
Funding
Flags