Difference between revisions of "CDS 110b, Winter 2008"
(→Announcements) 
(→Announcements) 

Line 27:  Line 27:  
== Announcements ==  == Announcements ==  
<table align=right border=0><tr><td>[[#Old AnnouncementsArchive]]</table>  <table align=right border=0><tr><td>[[#Old AnnouncementsArchive]]</table>  
+  * 11 Feb 08: [[CDS 110b: Stochastic SystemsWeek 6  Stochastic Systems]]  
+  * 8 Feb 08: [[CDS 110b: State EstimationWeek 5  State Estimation]]  
* 10 Feb 08: HW #4 is graded;  * 10 Feb 08: HW #4 is graded;  
** Nonproject track: avg = 30, hours = 10  ** Nonproject track: avg = 30, hours = 10 
Revision as of 05:21, 14 February 2008
CDS 110b  Schedule  Project  Course Text 

This is the homepage for CDS 110b, Introduction to Control Theory for Winter 2008.
Instructor

Teaching Assistants (cds110tas@cds)

Announcements
Archive 
 11 Feb 08: Week 6  Stochastic Systems
 8 Feb 08: Week 5  State Estimation
 10 Feb 08: HW #4 is graded;
 Nonproject track: avg = 30, hours = 10
 Project track: avg = 19, hours: 5
 8 Feb 08: HW #4 solutions are now available.
 6 Feb 08: HW #3 solutions are now available.
 Nonproject track: avg = 32 +/ 8, hours = 11.5
 Project track: avg = 17 +/2, hours: 5
 3 Feb 08: HW #2 solutions are now available.
 30 Jan 08: HW #2 is graded; Avg score = 28/30 +/ 2, average time = 8 hours.
 30 Jan 08: Week 4  Receding Horizon Control
 Homework 4 (due 6 Feb 08): problems 3.1, 3.3, 3.2 (students working on course project do first two problems only)
Course Syllabus
Course Desciption and Goals: CDS 110b focuses on intermediate topics in control theory, including state estimation using Kalman filters, optimal control methods and modern control design techniques. Upon completion of the course, students will be able to design and analyze control systems of moderate complexity. Students may optionally participate in a course project in lieu of taking the midterm and final. Students participating in the course project will learn how to implement and test control systems on a modern experimental system.
 cds110students mailing list  all students in the class should be signed up on this list (archive)
Grading
The final grade will be based on homework sets, a midterm exam and a final exam:
 Homework: 50%
Homework sets will be handed out weekly and will generally be due one week later at 5 pm to the box outside of 109 Steele. Students are allowed three grace periods of two days each which can be used at any time (but no more than 1 grace period per homework set). Additional extensions on homework will only be allowed under exceptional circumstances and require prior permission for the instructor.
 Midterm: 20%
A midterm exam will be handed out at the beginning of midterms week and due at the end of the midterm examination period. The midterm exam will be open book.
 Final: 30%
The final exam will be handed out on the last day of class due at the end of finals week. It will be an open book exam.
Note: students working on the course project will not be required to take the midterm or final. Instead, two project reports will be due documenting the experimental work performed as part of the class. In addition, students working on the course project are only required to complete the first 2 problems on each homework set.
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor. All solutions that are handed in should reflect your understanding of the subject matter at the time of writing. MATLAB scripts and plots are considered part of your writeup and should be done individually. Use of written solutions from prior years or other sources is not allowed.
No collaboration is allowed on the midterm or final exams.
Course Text and References
The main course text is
 R. M. Murray, ', Preprint, 2008.
You may find the following texts useful as well:
 K. J. Åström and R. M. Murray, ', Princeton University Press, 2008.
 B. Friedland, Control System Design: An Introduction to StateSpace Methods, Dover, 2004.
 F. L. Lewis and V. L. Syrmos, Optimal Control, Second Edition, WileyIEEE, 1995. (Google Books)
 A. D. Lewis, A Mathematical Approach to Classical Control, 2003.
 J. Doyle, B. Francis, A. Tannenbaum, Feedback Control Theory, Macmillan, 1992.
<span id=Old_Announcements />Old Announcements
 29 Jan 08: Office hours today at 34pm will be held in 114 STL.
 26 Jan 08: an updated version of Chapter 2 of the course text has been posted (small fixes)
 24 Jan 08: HW #1 solutions are available; Avg score = 36 +/ 2, average time = 16.5 hours (!).
 23 Jan 08: Week 3  LQR
 Homework 3 (due 30 Jan 08)
 14 Jan 08: Week 2  Optimal Control
 Homework 2 (due 22 Jan 08): problems 2.3, 2.4ad, 2.6
 7 Jan 08: Week 1  Two Degree of Freedom Control Design
 Homework 1 (due 14 Jan 08): problems 1.2, 1.3, 1.4 and 1.5
 13 Dec 07: initial web page created; this is still in DRAFT form