## CALIFORNIA INSTITUTE OF TECHNOLOGY

BioEngineering

## BE 150

M. Elowitz and R. M. Murray Winter 2012 Problem Set #8

Issued: 5 Mar 12 Due: 14 Mar 12

1. Pattern formation by lateral inhibition. Based on Collier et al., Journal of theoretical biology, 1996

The Notch-Delta signaling pathway allows communication between neighboring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighboring cells and sharply delineating neighboring regions in developing tissues. In this problem, we investigate the pattern-forming potential and temporal behavior of the Collier model through numerical simulation.

The dynamics of Notch  $(n_p)$  and Delta  $(d_p)$  for each individual cell p are governed by:

$$\dot{n_p} = f(\bar{d_p}) - n_p$$

$$\dot{d}_p = \nu(g(n_p) - d_p)$$

where  $\bar{d}_p$  denotes the mean of the levels of Delta activity in the cells adjacent to cell p, and

$$f(x) = \frac{x^k}{a + x^k}, g(x) = \frac{1}{1 + bx^h}$$

Consider a two dimensional array of cells, where each cell is modeled by a square. The parameters for the simulation are  $a=0.01, b=100, \nu=1, k=h=2$ . Simulate Notch-Delta dynamics for a  $15\times15$  array of cells, using initial conditions chosen randomly from a uniform distribution. Use the code provided in in NotchDeltaGui.m to provide a visualization of your simulation. Color cells with high Notch activity (if Notch activity is >=0.995) in red, and low Notch activity level in black. Provide an illustration of the steady state of your simulation.

2. Scaling of morphogen gradients. Based on Ben-Zvi, Barkai, PNAS, 2010

Consider the feedback "expansion-repression" model for morphogen gradient scaling in which the range of the morphogen gradient, [M] increases with the abundance of some diffusible molecule [E], whose production, in turn, is repressed by morphogen signaling. The partial differential equations

$$\frac{d[M]}{dt} = D_M \nabla^2 [M] - (1 + [E])^{-1_1} \alpha_M^1 [M] - (1 + [E])^{-1} \alpha_M^2 [M]^2$$
$$\frac{d[E]}{dt} = D_E \nabla^2 [E] - \alpha_E^1 [E] + \beta_E \frac{1}{1 + ([M]/T_{rep})^h}$$

and boundary conditions:

$$D_{M}\nabla[M]_{x=0} = -\eta_{M}$$

$$D_{M}\nabla[M]_{x=L} = 0$$

$$D_{E}\nabla[E]_{x=0} = 0$$

$$D_{E}\nabla[E]_{x=L} = 0$$

represent the dynamics of morphogen/expander concentrations with respect to position and time.

a) Implement the system above using the technique discussed in class. Use the parameters below in addition to L=15 grid points, h=4, cell size 100  $\mu m$  and time at steady state  $5\times 10^5$  sec.

| Morphogen diffusion, $D_M$                         | 10 μm <sup>2</sup> ·sec <sup>-1</sup> |
|----------------------------------------------------|---------------------------------------|
| E diffusion, DE                                    | 1 μm <sup>2</sup> ·sec <sup>-1</sup>  |
| Morphogen linear degradation rate, $\alpha_M^{-1}$ | 10 <sup>-1</sup> sec <sup>-1</sup>    |
| Morphogen quadratic degradation rate, $\alpha_M^2$ | 1 µM <sup>-1</sup> ·sec <sup>-1</sup> |
| E degradation rate, $\alpha_E$                     | 10 <sup>-5</sup> sec <sup>-1</sup>    |
| Morphogen flux from proximal pole, $\eta_M$        | 10 μm·μM·sec <sup>-1</sup>            |
| E production rate, $\beta_E$                       | $10^{-2}  \mu M \cdot sec^{-1}$       |
| Threshold for E repression, Trep                   | $10^{-3} \mu M$                       |
|                                                    |                                       |

Figure 1: Parameters for problem 4 a)

- b) Plot the dynamics of the expansion-repression mechanism at three different times: when the morphogen gradient is sharp, when the gradient expands, and at steady state, along with the threshold. Explain the dynamics of the system in the three situations.
- c) Run the simulation with parameters in figure 2 for two different cell sizes and plot the morphogen concentration in  $\mu M$  vs relative length x/L. Do the same using parameters from figure 1 and compare.
- d) What is the condition on the diffusion of the expander that allows for scaling of the gradient?

```
Morphogen diffusion, D_M 10 \mu\text{m}^2\cdot\text{sec}^{-1} E diffusion, D_E 10^{-1} \mu\text{m}^2\cdot\text{sec}^{-1} Morphogen linear degradation rate, \alpha_M^{-1} 10^{-5} sec^{-1} Morphogen quadratic degradation rate, \alpha_M^{-2} 1 \mu\text{M}^{-1}\cdot\text{sec}^{-1} E degradation rate, \alpha_E 10^{-4} sec^{-1} 1 \mu\text{m}\cdot\text{\mu}\text{M}\cdot\text{sec}^{-1} E production rate, \beta_E 10^{-3} \mu\text{M}\cdot\text{sec}^{-1} Threshold for E repression, T_{\text{rep}} 10^{-3} \mu\text{M}
```

Figure 2: Parameters for problem 4 b)