Outline

- Syntax and semantics of LTL
- Specifying properties in LTL
- Equivalence of LTL formulas
- Fairness in LTL
- Other temporal logics (if time)

Chapter 5
Formal Methods for System Verification

Specification using LTL
- Linear temporal logic (LTL) is a math’l language for describing linear-time prop’s
- Provides a particularly useful set of operators for constructing LT properties without specifying sets

Methods for verifying an LTL specification
- Theorem proving: use formal logical manipulations to show that a property is satisfied for a given system model
- Model checking: explicitly check all possible executions of a system model and verify that each of them satisfies the formal specification
 - Roughly like trying to prove stability by simulating every initial condition
 - Works because discrete transition systems have finite number of states
 - Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)
Temporal Logic Operators

Two key operators in temporal logic

- • ◊ “eventually” – a property is satisfied at some point in the future
- • □ “always” – a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time

- • Linear temporal logic ⇒ each moment in time has a well-defined successor moment
- • Branching temporal logic ⇒ reason about multiple possible time courses
- • “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic

- • Specific class of operators for specifying linear time properties
- • Introduced by Pnueli in the 1970s (recently passed away)
- • Large collection of tools for specification, design, analysis

Other temporal logics

- • CTL = computation tree logic (branching time; will see later, if time)
- • TCTL = timed CTL - check to make sure certain events occur in a certain time
- • TLA = temporal logic of actions (Lamport) [variant of LTL]
- • μ calculus = for reactive systems; add “least fixed point” operator (more on Thu)
Syntax of LTL

LTL formulas:

$$\varphi ::= \text{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

- $a =$ atomic proposition
- $\bigcirc =$ “next”: φ is true at next step
- $\mathcal{U} =$ “until”: φ_2 is true at some point, φ_1 is true until that time

Operator precedence

- Unary bind stronger than binary
- \mathcal{U} takes precedence over \land, \lor and \rightarrow

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

- Same notation as linear time properties: $\sigma \models \varphi$ (path “satisfies” specification)
“Primary” temporal logic operators

- **Eventually** \(\Diamond \phi := \text{true} U \phi \) \(\phi \) will become true at some point in the future
- **Always** \(\Box \phi := \neg \Diamond \neg \phi \) \(\phi \) is always true; “(never (eventually (\neg \phi)))”

Some common composite operators

- \(p \rightarrow \Diamond q \) \(p \) implies eventually \(q \) (response)
- \(p \rightarrow q U r \) \(p \) implies \(q \) until \(r \) (precedence)
- \(\Box \Diamond p \) always eventually \(p \) (progress)
- \(\Diamond \Box p \) eventually always \(p \) (stability)
- \(\Diamond p \rightarrow \Diamond q \) eventually \(p \) implies eventually \(q \) (correlation)

Operator precedence

- Unary binds stronger than binary
- Bind from right to left:
 \(\Box \Diamond p = (\Box (\Diamond p)) \)
 \(p U q U r = p U (q U r) \)
- \(U \) takes precedence over \(\land, \lor \) and \(\rightarrow \)
Example: Traffic Light

System description
- Focus on lights in one particular direction
- Light can be any of three colors: green, yellow, red
- Atomic propositions = light color

Ordering specifications
- Liveness: “traffic light is green infinitely often”
 \(\square \Diamond \text{green} \)
- Chronological ordering: “once red, the light cannot become green immediately”
 \(\square (\text{red} \rightarrow \neg \Diamond \text{green}) \)
- More detailed: “once red, the light always becomes green eventually after being yellow for some time”
 \(\square (\text{red} \rightarrow (\Diamond \text{green} \land (\neg \text{green} \lor (\neg \text{green} \lor \Diamond \text{green})))) \)

Progress property
- Every request will eventually lead to a response
 \(\square (\text{request} \rightarrow \Diamond \text{response}) \)
Semantics: when does a path satisfy an LTL spec?

Definition 5.6. Semantics of LTL (Interpretation over Words)
Let φ be an LTL formula over AP. The LT property induced by φ is

$$\text{Words}(\varphi) = \{ \sigma \in (2^{AP})^\omega \mid \sigma \models \varphi \}$$

where the satisfaction relation $\models \subseteq (2^{AP})^\omega \times \text{LTL}$ is the smallest relation with the properties in Figure 5.2.

$\sigma \models \text{true}$
$\sigma \models a$ iff $a \in A_0$ (i.e., $A_0 \models a$)
$\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
$\sigma \models \Diamond \varphi$ iff $\exists j \geq 0. \sigma[j \ldots] \models \varphi$
$\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
$\sigma \models \Box \varphi$ iff $\forall j \geq 0. \sigma[j \ldots] \models \varphi$
$\sigma \models \bigcirc \varphi$ iff $\sigma[1 \ldots] = A_1A_2A_3\ldots \models \varphi$
$\sigma \models \varphi_1 \cup \varphi_2$ iff $\exists j \geq 0. \sigma[j \ldots] \models \varphi_2$ and $\sigma[i \ldots] \models \varphi_1$, for all $0 \leq i < j$

Figure 5.2: LTL semantics (satisfaction relation \models) for infinite words over 2^{AP}.
Semantics of LTL

The semantics of the combinations of \square and \Diamond can now be derived:

$$\sigma \models \square \Diamond \varphi \iff \exists j. \sigma[j \ldots] \models \varphi$$

$$\sigma \models \Diamond \square \varphi \iff \forall j. \sigma[j \ldots] \models \varphi.$$

Here, $\exists j$ means $\forall i \geq 0. \exists j \geq i$, “for infinitely many $j \in \mathbb{N}$”, while $\forall j$ stands for $\exists i \geq 0. \forall j \geq i$, “for almost all $j \in \mathbb{N}$”.

Definition 5.7. Semantics of LTL over Paths and States
Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

- For infinite path fragment π of TS, the satisfaction relation is defined by
 $$\pi \models \varphi \iff \text{trace}(\pi) \models \varphi.$$

- For state $s \in S$, the satisfaction relation \models is defined by
 $$s \models \varphi \iff (\forall \pi \in \text{Paths}(s). \pi \models \varphi).$$

- TS satisfies φ, denoted $TS \models \varphi$, if $\text{Traces}(TS) \subseteq \text{Words}(\varphi)$.
Semantics of LTL

From this definition, it immediately follows that

\[TS \models \varphi \]

iff

\[\text{Traces}(TS) \subseteq \text{Words}(\varphi) \]

iff

\[TS \models \text{Words}(\varphi) \]

iff

\[\pi \models \varphi \text{ for all } \pi \in \text{Paths}(TS) \]

iff

\[s_0 \models \varphi \text{ for all } s_0 \in I. \]

Remarks

- Which condition you use depends on type of problem under consideration
- For reasoning about correctness, look for (lack of) intersection between sets:
Consider the following transition system

Consider the transition system TS depicted in Figure 5.3 with the set of propositions $AP = \{a, b\}$. For example, we have that $TS |= \square a$, since all states are labeled with a, and hence, all traces of TS are words of the form $A_0 A_1 A_2 \ldots$ with $a \in A_i$ for all $i \geq 0$. Thus, $s_i |= \square a$ for $i = 1, 2, 3$. Moreover:

$s_1 |= \Diamond (a \land b)$ since $s_2 \models a \land b$ and s_2 is the only successor of s_1
$s_2 \notmodels \Diamond (a \land b)$ and $s_3 \notmodels \Diamond (a \land b)$ as $s_3 \in \text{Post}(s_2)$, $s_3 \in \text{Post}(s_3)$ and $s_3 \notmodels a \land b$.

This yields $TS \notmodels \Diamond (a \land b)$ as s_3 is an initial state for which $s_3 \notmodels \Diamond (a \land b)$. As another example:

$TS \models \square (\neg b \rightarrow \square (a \land \neg b))$,

since s_3 is the only $\neg b$ state, s_3 cannot be left anymore, and $a \land \neg b$ in s_3 is true. However,

$TS \notmodels b \lor (a \land \neg b)$,

since the initial path $(s_1 s_2)\omega$ does not visit a state for which $a \land \neg b$ holds. Note that the initial path $(s_1 s_2)^* s_3^\omega$ satisfies $b \lor (a \land \neg b)$.

■
Specifying Timed Properties for Synchronous Systems

For synchronous systems, LTL can be used as a formalism to specify “real-time” properties that refer to a discrete time scale. Recall that in synchronous systems, the involved processes proceed in a lock step fashion, i.e., at each discrete time instance each process performs a (sometimes idle) step. In this kind of system, the next-step operator \bigcirc has a “timed” interpretation: $\bigcirc \varphi$ states that “at the next time instant φ holds”. By putting applications of \bigcirc in sequence, we obtain, e.g.:

$$\bigcirc^k \varphi \overset{\text{def}}{=} \underbrace{\bigcirc \bigcirc \ldots \bigcirc}_{\text{k-times}} \varphi$$

“φ holds after (exactly) k time instants”.

Assertions like “φ will hold within at most k time instants” are obtained by

$$\Diamond \leq k \varphi = \bigvee_{0 \leq i \leq k} \bigcirc^i \varphi.$$

Statements like “φ holds now and will hold during the next k instants” can be represented as follows:

$$\Box \leq k \varphi = \neg \Diamond \leq k \neg \varphi = \neg \bigvee_{0 \leq i \leq k} \bigcirc^i \neg \varphi.$$

Remark

- Idea can be extended to non-synchronous case (e.g., Timed CTL [later])
Equivalence of LTL Formulas

Definition 5.17. Equivalence of LTL Formulae
LTL formulae φ_1, φ_2 are equivalent, denoted $\varphi_1 \equiv \varphi_2$, if $\text{Words}(\varphi_1) = \text{Words}(\varphi_2)$. □

<table>
<thead>
<tr>
<th>Duality law</th>
<th>Idempotency law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg \Diamond \varphi \equiv \Box \neg \varphi$</td>
<td>$\Diamond \Diamond \varphi \equiv \Diamond \varphi$</td>
</tr>
<tr>
<td>$\neg \Box \varphi \equiv \Diamond \neg \varphi$</td>
<td>$\Box \Box \varphi \equiv \Box \varphi$</td>
</tr>
<tr>
<td>$\neg \Box \varphi \equiv \Diamond \neg \varphi$</td>
<td>$\varphi \mathcal{U} (\varphi \mathcal{U} \psi) \equiv \varphi \mathcal{U} \psi$</td>
</tr>
<tr>
<td>$(\varphi \mathcal{U} \psi) \mathcal{U} \psi \equiv \varphi \mathcal{U} \psi$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorption law</th>
<th>Expansion law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Diamond \Box \varphi \equiv \Box \Diamond \varphi$</td>
<td>$\varphi \mathcal{U} \psi \equiv \psi \lor (\varphi \land (\Box (\varphi \mathcal{U} \psi)))$</td>
</tr>
<tr>
<td>$\Box \Diamond \varphi \equiv \Diamond \Box \varphi$</td>
<td>$\Diamond \psi \equiv \psi \lor \Diamond \Diamond \psi$</td>
</tr>
<tr>
<td>$\Box \psi \equiv \psi \land \Box \Box \psi$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributive law</th>
<th>Non-identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Box (\varphi \mathcal{U} \psi) \equiv (\Box \varphi) \mathcal{U} (\Box \psi)$</td>
<td>$\Diamond (a \land b) \neq \Diamond a \land \Diamond b$</td>
</tr>
<tr>
<td>$\Diamond (\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$</td>
<td>$\Box (a \lor b) \neq \Box a \lor \Box b$</td>
</tr>
<tr>
<td>$\Box (\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$</td>
<td></td>
</tr>
</tbody>
</table>

EECI, Mar 2013 Richard M. Murray, Caltech CDS 12
LTL Specs for Control Protocols: RoboFlag Drill

Task description
- Incoming robots should be blocked by defending robots
- Incoming robots are assigned randomly to whoever is free
- Defending robots must move to block, but cannot run into or cross over others
- Allow robots to communicate with left and right neighbors and switch assignments

Goals
- Would like a provably correct, distributed protocol for solving this problem
- Should (eventually) allow for lost data, incomplete information

Questions
- How do we describe task in terms of LTL?
- Given a protocol, how do we prove specs?
- How do we design the protocol given specs?
Properties for RoboFlag program

CCL formulas (will cover in more detail later)
• \(q' \)
 • \(q \)
 evaluate \(q \) at the next action in path

• \(p \rightarrow q \)
 \(\Box (p \rightarrow \Diamond q) \)
 “\(p \) leads to \(q \)”: if \(p \) is true, \(q \) will eventually be true

• \(p \text{ co } q \)
 “\(\Box (p \rightarrow \Diamond q) \)”
 if \(p \) is true, then next time state changes, \(q \) will be true

Safety (Defenders do not collide)
\[
\forall i . \ y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg switch_{i,i+1} \text{ co } \neg switch_{i,i+1}
\]
True if robots \(i \) and \(i+1 \) have targets that cause crossed paths

Stability (switch predicate stays false)
\[
\forall i . \ 2\delta \land z_i + 2\delta < z_{i+1} \land \neg switch_{i,i+1} \text{ co } \neg switch_{i,i+1}
\]
Robots are "far enough" apart.

“Lyapunov” stability
• Remains to show that we actually approach the goal (robots line up with targets)
• Will see later we can do this using a Lyapunov function
Fairness

Mainly an issue with concurrent processes

- To make sure that the proper interaction occurs, often need to know that each process gets executed reasonably often
- Multi-threaded version: each thread should receive some fraction of processes time

Two issues: implementation and specification

- Q1: How do we implement our algorithms to insure that we get “fairness” in execution
- Q2: how do we model fairness in a formal way to reason about program correctness

Example: Fairness in RoboFlag Drill

- To show that algorithm behaves properly, need to know that each agent communicates with neighbors regularly (infinitely often), in each direction

Difficulty in describing fairness depends on the logical formalism

- Turns out to be pretty easy to describe fairness in linear temporal logic
- Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)
Fairness Properties in LTL

Definition 5.25 LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas over a set of atomic propositions

1. An *unconditional LTL fairness constraint* is an LTL formula of the form $u_{\text{fair}} = \Box \Diamond \Psi$.

2. A *strong LTL fairness condition* is an LTL formula of the form $s_{\text{fair}} = \Box \Diamond \Phi \rightarrow \Box \Diamond \Psi$.

3. A *weak LTL fairness constraint* is an LTL formula of the form $w_{\text{fair}} = \Diamond \Box \Phi \rightarrow \Box \Diamond \Psi$.

An *LTL fairness assumption* is a conjunction of LTL fairness constraints (of any arbitrary type).

$$
\text{fair} = u_{\text{fair}} \land s_{\text{fair}} \land w_{\text{fair}}
$$

Rules of thumb

- strong (or unconditional) fairness: useful for solving contentions
- weak fairness: sufficient for resolving the non-determinism due to interleaving.
Fair paths and traces

\[
\text{FairPaths}(s) = \{ \pi \in \text{Paths}(s) \mid \pi \models \text{fair} \},
\]
\[
\text{FairTraces}(s) = \{ \text{trace}(\pi) \mid \pi \in \text{FairPaths}(s) \}.
\]

Definition 5.26. Satisfaction Relation for LTL with Fairness
For state \(s \) in transition system \(TS \) (over \(AP \)) without terminal states, LTL formula \(\varphi \), and LTL fairness assumption \(\text{fair} \) let

\[
s \models_{\text{fair}} \varphi \quad \text{iff} \quad \forall \pi \in \text{FairPaths}(s). \pi \models \varphi \quad \text{and} \quad TS \models_{\text{fair}} \varphi \quad \text{iff} \quad \forall s_0 \in I. s_0 \models_{\text{fair}} \varphi.
\]

Theorem 5.30. Reduction of \(\models_{\text{fair}} \) to \(\models \)
For transition system \(TS \) without terminal states, LTL formula \(\varphi \), and LTL fairness assumption \(\text{fair} \):

\[
TS \models_{\text{fair}} \varphi \quad \text{if and only if} \quad TS \models (\text{fair} \rightarrow \varphi).
\]
Branching Time and Computational Tree Logic

Consider transition systems with multiple branches
- Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
- In this case, there might be *multiple* paths from a given state
- Q: in evaluating a temporal logic property, which execution branch do we check?

Computational tree logic: allow evaluation over some or all paths

\[
\begin{align*}
 s \models \exists \varphi & \iff \pi \models \varphi \text{ for some } \pi \in \text{Paths}(s) \\
 s \models \forall \varphi & \iff \pi \models \varphi \text{ for all } \pi \in \text{Paths}(s)
\end{align*}
\]
Example: Triply Redundant Control Systems

Systems consists of three processors and a single voter
- \(s_{i,j} = i \) processors up, \(j \) voters up
- Assume processors fail one at a time; voter can fail at any time
- If voter fails, reset to fully functioning state (all three processors up)
- System is operation if at least 2 processors remain operational

Properties we might like to prove

<table>
<thead>
<tr>
<th>Property</th>
<th>Formalization in CTL</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possibly the system never goes down</td>
<td>(\exists \Box \neg \text{down})</td>
<td>Holds</td>
</tr>
<tr>
<td>Invariantly the system never goes down</td>
<td>(\forall \Box \neg \text{down})</td>
<td>Doesn’t hold</td>
</tr>
<tr>
<td>It is always possible to start as new</td>
<td>(\forall \Box \exists \Diamond \text{up}_3)</td>
<td>Holds</td>
</tr>
<tr>
<td>The system always eventually goes down and is operational until going down</td>
<td>(\forall \left((\text{up}_3 \lor \text{up}_2) \cup \text{down}\right))</td>
<td>Doesn’t hold</td>
</tr>
</tbody>
</table>
Other Types of Temporal Logic

CTL ≠ LTL

- Can show that LTL and CTL are not proper subsets of each other
- LTL reasons over a complete path; CTL from a given state

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Linear time</th>
<th>Branching time</th>
</tr>
</thead>
<tbody>
<tr>
<td>“behavior” in a state s</td>
<td>path-based: $\text{trace}(s)$</td>
<td>state-based: computation tree of s</td>
</tr>
</tbody>
</table>
| temporal logic | LTL: path formulae φ $s \models \varphi$ iff $\forall \pi \in \text{Paths}(s). \pi \models \varphi$ | CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$

CTL* captures both

$\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi$

$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \varphi_1 \lor \varphi_2$

Timed Computational Tree Logic

- Extend notions of transition systems and CTL to include “clocks” (multiple clocks OK)
- Transitions can depend on the value of clocks
- Can require that certain properties happen within a given time window

$\forall \Box (\text{far} \rightarrow \forall \Diamond \leq 1 \land \forall \Box \leq 1 \text{ up})$
Summary: Specifying Behavior with LTL

Description

• State of the system is a snapshot of values of all variables
• Reason about paths σ: sequence of states of the system
• No strict notion of time, just ordering of events
• Actions are relations between states: state s is related to state t by action a if a takes s to t (via prime notation: $x' = x + 1$)
• Formulas (specifications) describe the set of allowable behaviors
• Safety specification: what actions are allowed
• Fairness specification: when can a component take an action (eg, infinitely often)

Example

• Action: $a \equiv x' = x + 1$
• Behavior: $\sigma \equiv x := 1, x := 2, x := 3, ...$
• Safety: $\square x > 0$ (true for this behavior)
• Fairness: $\square (x' = x + 1 \lor x' = x) \land \square \Diamond (x' \neq x)$

Properties

• Can reason about time by adding “time variables” ($t' = t + 1$)
• Specifications and proofs can be difficult to interpret by hand, but computer tools existing (eg, TLC, Isabelle, PVS, SPIN, etc)

- $\Box p \equiv \text{always } p$ (invariance)
- $\Diamond p \equiv \text{eventually } p$ (guarantee)
- $p \rightarrow \Diamond q \equiv p \text{ implies eventually } q$ (response)
- $p \rightarrow q \cup r \equiv q \text{ until } r$ (precedence)
- $\Box \Diamond p \equiv \text{always eventually } p$ (progress)
- $\Diamond \Box p \equiv \text{eventually always } p$ (stability)
- $\Diamond p \rightarrow \Diamond q \equiv \text{eventually } p \text{ implies eventually } q$ (correlation)