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Chapter 1

Signals and Systems

The study of linear systems builds on the concept of linear maps over vector spaces, with inputs
and outputs represented as function of time and linear systems represented as a linear map over
functions. In this chapter we review the basic concepts of linear operators over (infinite-dimensional)
vector spaces, define the notation of a linear system, and define metrics on signal spaces that can
be used to determine norms for a linear system. We assume a basic background in linear algebra.

1.1 Linear Spaces and Mappings

We briefly review here the basic definitions for linear spaces, being careful to take a general view
that will allow the underlying space to be a signal space (as opposed to a finite dimensional linear
space).

Definition 1.1. A set V is a linear space over R if the following axioms hold:

1. Addition: For every x, y 2 V there is a unique element x+y 2 V where the addition operator
+ satisfies:

(a) Commutativity: x+ y = y + x.

(b) Associativity: (x+ y) + z = x+ (y + z).

(c) Additive identity element: there exists an element 0 2 V such that x + 0 = x for all
x 2 V .

(d) Additive inverse: For every x 2 V there exists a unique element �x 2 V such that
x+ (�x) = 0.

2. Scalar multiplication: For every ↵ 2 R and x 2 V there exists a unique vector ↵x 2 V and
the scaling operator satisfies:

(a) Associativity: (↵�) = ↵(�x).

(b) Distributivity over addition in V : ↵(x+ y) = ↵x+ ↵y.

(c) Distributivity over addition in R: (↵+ �)x = ↵x+ �x.

(d) Multiplicative identity: 1 ·x = x for all x 2 V .
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More generally, we can replace R with any field (such as complex number C). The terms “vector
space”, “linear space”, and “linear vector space” will be used interchangeably throughout the text.

A vector space V is said to have a basis B = {v1, v2, . . . , vn} is any element v 2 V can be written
as a linear combination of the basis vectors vi and the elements of B are linearly independent. If
such a basis exists for a finite n, then V is said to be finite-dimensional of dimension n. If no such
basis exists for any finite n then the vector space is said to be infinite-dimensional.

Example 1.1 (Rn). The finite-dimensional vector space V = Rn consisting of elements x =
(x1, . . . , xn) is a vector space over the reals, with the addition and scaling operations defined as

x+ y = (x1 + y1, . . . , xn + yn)

↵x = (↵x1, . . . ,↵n)

Example 1.2 (P[t0, t1]). The space of piecewise continuous mappings from a time interval [t0, t1] ⇢
R to R is defined as the set of functions F : [t0, t1] ! R that have a finite set of discontinuities on
every bounded subinterval.

As an exercise, the reader should verify that the axioms of a linear space are satisfied.
Extensions and special cases include:

1. Pn[t0, t1]: the space of piecewise continuous functions taking values in Rn.

2. Cn[t0, t1]: the space of continuous functions F : [t0, t1] ! Rn.

All of these vector spaces are infinite dimensional.

Example 1.3 (V1⇥V2). Given two linear spaces V1 and V2 of the same type, the Cartesian product
V1 ⇥ V2 is a linear space with addition and scaling defined component-wise. For example, Rn ⇥Rm

is the linear space Rm+n and the linear space C[t0, t1]⇥ C[t0, t1] is a linear space C2[t0, t1] with the
operations

(f, g)(t) = (f(t), g(t)), (S1.1)

(f1, g1) + (f2, g2) = (f1 + g1, f2 + g2), (S1.2)

↵(f, g) = (↵f,↵g). (S1.3)

Given a vector space V over the reals, we can define a norm on the vector space that associates
with each element x 2 V a real number kxk 2 R.

Definition 1.2. A mapping k · k : V ! R is a norm on V if it satisfies the following axioms:

1. kxk � 0 for all x 2 V .
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2. kxk = 0 if and only if x = 0.

3. k↵xk = |↵| kxk for all x 2 V and ↵ 2 R.

4. kx+ yk  kxk+ kyk for all x, y 2 V (called the triangle inequality).

These definitions are easy to verify for finite-dimensional vector spaces, but they hold even if a
vector space is infinite-dimensional.

The following table describes some standard norms for finite-dimensional and infinite dimen-
sional linear spaces.

Name V = Rn
V = {Z+ ! Rn} V = {(�1,1) ! R}

1-norm, k · k1
P

i |xi|
P

k kx[k]k
R1
�1 |u(⌧)|, d⌧

2-norm, k · k2
pP

i |xi|2
�P

k kx[k]k2
�1/2 ⇣R1

�1 |u(⌧)|2, d⌧
⌘1/2

p-norm, k · kp p
pP

i |xi|p
�P

k kx[k]k2
�1/p ⇣R1

�1 |u(⌧)|p, d⌧
⌘1/p

1-norm, k · k1 maxi |xi| maxk kx[k]k supt |u(t)|

(The function sup is the supremum, where supt u(t) is the smallest number ū such that u(t)  ū

for all t.)
A linear space equipped with a norm is called a normed linear space. A normed linear space

is said to be complete if every Cauchy sequence in V converges to a point in V . (A sequence
{xi} is a Cauchy sequence if for every ✏ > 0 there exists an integer N such that kxp � xqk < ✏

for all p, q > N .) Not every normed linear space is complete. For example, the normed linear
space C[0,1), consisting of continuous, real-valued functions is not complete since it is possible to
construct a sequence of continuous functions that converge to a discontinuous function (for example
a step function). The space P[0,1) consisting of piecewise continuous functions is complete. A
complete normed linear space is called a Banach space.

Let V and W be linear spaces over R (or any common field). A mapping A : V ! W is a linear
map if

A(↵1v1 + ↵2v2) = ↵Av1 + ↵2V2

for all ↵1,↵2 2 R and v1, v2 2 V . Examples include:

1. Matrix multiplication on Rn.

2. Integration operators on P[0, 1]: Av =
R 1
0 v(t) dt.

3. Convolution operators: let h 2 P[0,1) and define the linear operator Ch as

(Chv)(t) =

Z t

0
h(t� ⌧)v(⌧) d⌧

This last item provides a hint of how we will define a linear system.

Definition 1.3. An inner product on a linear space V is a mapping h · , · i : V ⇥ V ! R with the
following properties:

1. Bilinear: h↵1v1 + ↵2v2, wi = ↵1hv1, wi+ ↵2hv2, wi and the same for the second argument.
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2. Symmetric: hv, wi = hw, vi

3. Positive definite: hv, vi > 0 if v 6= 0.

A (complete) linear space with an inner product is called a Hilbert space. The inner produce
also defines a norm given by kvk = hv, vi. A property of the inner product is that |hu, vi| 
kuk2 · kvk2 (the Cauchy-Schwartz inequality), which we leave as an exercise (hint: rewrite u as
u = z + (hu, vi/kvk)v where z can be shown to be orthogonal to u).

Example 1.4 (2-norm). Let V = C(�1,1). Then k · k2 can be verified to be a norm by checking
each of the axioms:

1. kuk2 =
⇣R1

�1 |u(t)|2 dt
⌘1/2

> 0.

2. If u(t) = 0 for all t then kuk2 = 0 by definition. To see the converse, assume that kuk2 = 0.
Then by definition we must have

Z 1

�1
|u(t)|2 dt = 0

and therefore kuk2 = 0 on any subset of (�1,1). Since C(�1,1) consists of continuous
functions, it follows that u(t) = 0 at all points t (if not, then there would be a subset of
(�1,1) on which |u(t)| > 0 and the integral would not be zero.

3. k↵uk2 =
⇣R1

�1 |↵u(t)|2 dt
⌘1/2

= ↵kuk2.

4. To show the triangle inequality for the 2-norm, we make use of the Cauchy-Schwartz inequality
by defining the inner product between two elements of V as

hu, vi =
Z 1

�1
u(t)v(t) dt.

It can be shown that this satisfies the properties of an inner product. Using the fact that
kuk2 = hu, ui we can show that

ku+ vk22 =
Z 1

�1
|u(t)|2 + 2u(t)v(t) + |v(t)|2 dt

= kuk22 + 2hu(t), v(t)i dt+ kvk22
 kuk22 + 2|hu(t), v(t)i| dt+ kvk22
 kuk22 + 2kuk2 · kvk2 + kvk22 = (kuk2 + kvk2)2

1.2 Input/Output Dynamical Systems

We now proceed to define an input/output dynamical system, with an eventual focus on linear
input/output dynamical systems. It is useful to distinguish between three di↵erent conceptual
aspects of a “dynamical system:

• A physical system represents a physical (or biological or chemical) system that we are trying
to analyze or design. An example of a physical system would be a vectored thrust aircraft or
perhaps a laboratory experiment intended to test di↵erent control algorithms.
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• A system model is an idealized version of the physical system. There may be many di↵erent
system models for a given physical system, depending on what questions we are trying to
answer. A model for a vectored thrust aircraft might be a simplified, planar version of the
system (relevant for understanding basic tradeo↵s), a nonlinear model that takes into ac-
count actuation and sensing characteristics (relevant for designing controllers that would be
implemented on the physical system), or a complex model including bending modes, thermal
properties and other details (relevant for doing model-based assessment of complex specifica-
tions involving those attributes).

• A system representation is a mathematical description of the system using one or more math-
ematical frameworks (e.g., ODEs, PDEs, automata, etc).

In the material that follows, we will use the word “system” to refer to the system representation,
but keeping in mind that this is just a mathematical abstraction of a system model that is itself
an approximation of the actual physical system.

Definition 1.4. Let T be a subset of R (usually T = [0,1) or T = Z+). A dynamical system on
T is a representation consisting of a tuple D = (U ,⌃,Y, s, r) where

• the input space U is a set of functions mapping T to a set U representing the set of possible
inputs to the system (typically U = Pm[0,1));

• the state space ⌃ is a set representing the state of the system (usually Rn, but can also be
infinite dimensional, for example when time delays or partial di↵erential equations are used);

• the output space Y is set of functions mapping T to a set Y representing the set of measured
outputs of the system (typically Y = Pp[0,1));

• the state transition function s : T ⇥T ⇥⌃⇥U ! ⌃ is a function of the form s(t1, t0, x0, u( · ))
that returns the state x(t1) of the system at time t1 reached from state x0 at time t0 as a
result of applying an input u 2 U ;

• the readout function r : T ⇥ ⌃ ⇥ U ! Y is a function of the form r(t, x, u) that returns the
output y(t) 2 Y representing the value of the measured outputs of the system at time t 2 T
given that we are at state x 2 ⌃ and applying input u 2 U .

Furthermore, the following axioms must be satisfied:

(A1) State transition axiom: for any t0, t1 2 T and x0 2 ⌃ with t1 � t0, if u( · ), ũ( · ) 2 U and

u(t) = ũ(t) for all t 2 [t0, t1] \ T

then

s(t1, t0, x0, u( · )) = s(t1, t0, x0, ũ( · )).

(A2) Semi-group axiom: For all t0  t1  t2 2 T , all x0 2 ⌃, and all u( · ) 2 U

s(t2, t1, s(t1, t0, x0, u( · )), u( · ) = s(t2, t0, x0, u( · )).
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Figure S1.1: Illustration of the state transition axiom.

The definition of a dynamical system captures precisely the notion of a system that has an
internal “state” x 2 ⌃ and that this state summarizes all information about the system at a given
time. Axiom A1 states that inputs di↵er before reaching a state x0 and after reaching a state
x1 but are otherwise the same will generate the same trajectory in state space, as illustrated in
Figure S1.1. Axiom A2 has the interpretation that we can compute the state at time t2 by first
calculating the state at some intermediate time t1. In both cases, these are formal statements that
the state x(t) summarizes all e↵ects due to the input prior to time t.

Example 1.5 (Input/output di↵erential equation representation). A nonlinear input/output sys-
tem can be represented as the di↵erential equation

dx

dt
= f(x, u), y = h(x, u), (S1.4)

where x is a vector of state variables, u is a vector of control signals, and y is a vector of measure-
ments. The term dx/dt represents the derivative of the vector x with respect to time, and f and h

are (possibly nonlinear) mappings of their arguments to vectors of the appropriate dimension.
For mechanical systems, the state consists of the configuration variables q 2 Rn and time deriva-

tives of the configuration variables q̇ 2 Rn (representing the generalized velocity of the system), so
that x = (q, q̇) 2 R2n. Note that in the dynamical system formulation of mechanical systems we
model the dynamics as first-order di↵erential equations, rather than the more traditional second-
order form (e.g., Lagrange’s equations), but it can be shown that first order di↵erential equations
can capture the dynamics of higher-order di↵erential equations by appropriate definition of the
state and the maps f and h.

A model is called a linear state space model if the functions f and h are linear in x and u. A
linear state space model can thus be represented by

dx

dt
= A(t)x+B(t)u, y = C(t)x+D(t)u, (S1.5)

where x 2 Rn, u 2 Rm, y 2 Rp and A(t), B(t), C(t), and D(t) are constant matrices of appropriate
dimension. The matrix A is called the dynamics matrix , the matrix B is called the control matrix ,
the matrix C is called the sensor matrix , and the matrix D is called the direct term. Frequently
models will not have a direct term, indicating that the input signal u does not influence the output
directly.
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This definition of a dynamical system is not the most general one possible. In particular, we
note that our definition is restricted to model systems that are causal : the current state depends
only on the past inputs. Furthermore, we have ignored the important class of stochastic dynamical
systems, in which the inputs, outputs, and states are described by probability distributions rather
than deterministic values. Similarly, this class of systems does not capture other types of non-
deterministic systems where a single state may lead to more than one possible output, a situation
that is not uncommon in automata theory.

In addition to restricting ourselves to deterministic, causal dynamical systems, we will also often
be interested in the case where the system is time-invariant as well. To define time invariance we
define the shift operator T⌧ : U ! U as (T⌧u)(t) = u(t + ⌧). We further define the input/output
map ⇢ : T ⇥ T ⇥ ⌃⇥ U ! Y as

⇢(t, t0, x0, u( · )) = r(t, s(t, t0, x0, u( · )), u(t)),

which allows us to evaluate the output of the system at time t given the initial state x(t0) = x0

and the input applied to the system.

Definition 1.5. A dynamical systems is time invariant if

1. U is closed under translation:

u( · ) 2 U =) T⌧u( · ) 2 U .

2. The input/output map is shift invariant :

⇢(t1, t0, x0, u( · )) = ⇢(t1 + ⌧, t0 + ⌧, x0, T⌧u( · )).

It is straightforward to show that a linear state space model is time invariant if the matrices
A(t), B(t), C(t), and D(t) do not depend on time, leading to the representation

dx

dt
= Ax+Bu, y = Cx+Du. (S1.6)

For our purposes, we will use a slightly more general description of a linear dynamical system,
focusing on input/output properties.

Definition 1.6. An input/output dynamical system is a linear input/output dynamical system if

1. U , ⌃, and Y are linear spaces over R (or some other common field, such as C);

2. for fixed t, t0 2 T with t � t0, ⇢ : T ⇥ T ⇥ ⌃⇥ U ! Y is linear in ⌃⇥ U onto Y :

⇢(t, t0, x0, u( · )) = ⇢(t, t0, x0, 0) + ⇢(t, t0, 0, u( · ))
⇢(t, t0,↵x+ �x

0
, 0) = ↵⇢(t, t0, x, 0) + �⇢(t, t0, x

0
, 0)

⇢(t, t0, 0,↵u( · ) + �u
0( · )) = ↵⇢(t, t0, 0, u( · )) + �⇢(t, t0, 0, u

0( · )).

It follows from this definition that if D is a linear dynamical system representation then the
output response can be divided into an initial condition (zero-input) response and a force (zero-
initial state) response:

⇢(t, t0, x0, u( · )) = ⇢(t, t0, x0, 0)| {z }
zero-input response

+ ⇢(t, t0, 0, u( · ))| {z }
zero-state response

.
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Furthermore, the principle of superposition holds for the zero-state response:

⇢(t, t0, x0,↵u( · ) + �u
0( · )) = ↵⇢(t, t0, x0, u( · )) + �⇢(t, t0, x0, u( · )).

These properties will be familiar to readers who have already encountered linear input/output
systems in signal processing or control theory, though we do note here the subtlety that these
definitions and properties hold in the time-varying case as well as for time-invariant systems.

For the remainder of the notes we will restrict ourselves to linear, time-invariant (LTI) represen-
tations. We will also generally concentrate on the zero-state response, corresponding to the (pure)
input/output response.

1.3 Linear Systems and Transfer Functions

Let G be a linear, time-invariant, causal, finite-dimensional system. A di↵erent way of defining G

is to define the zero-state response as a convolution equation:

y = G ⇤ u, y(t) =

Z 1

�1
G(t� ⌧)u(⌧) d⌧.

In this formulation, the function G : (�1,1) ! Rm is called the impulse response of the system
and can be regarding as the response of the system to a unit impulse �(t) (see FBS2e for the
definition of the impulse function). The term G(t� ⌧) then represents the response of the system
at time t to an input and time ⌧ and the convolution equation is constructed by considering the
input to be the convolution of the impulse function �( · ) with the input u( · ) and applying the
principle of superposition. We also note that if the system is causal then G(t) = 0 for all t < 0 (if
this is not the case, then y(t) and depending on u(⌧) for ⌧ < t).

An alternative to representation of the input/output response as a convolution integral is to
make use of the (one-sided) Laplace transform of the inputs, outputs, and impulse response. Letting
Ŷ (s) represent the Laplace transform of the signal y(t)w where s 2 C is the Laplace variable, we
have

Ŷ (s) =

Z 1

0
y(t)e�st

dt

=

Z 1

0

✓Z 1

0
G(t� ⌧)u(⌧) d⌧

◆
e
�st

dt

=

Z 1

0

Z 1

0

⇣
G(t� ⌧)u(⌧) e�s(t�⌧)

dt

⌘
d⌧

=

✓Z 1

0
G(t)e�st

dt

◆

| {z }
Ĝ(s)

✓Z 1

0
u(⌧)e�s⌧

d⌧

◆

| {z }
Û(s)

.

The Laplace transform of y(t) is thus given by the product of the Laplace transform of the impulse
response G(t) and the Laplace transform of the input u(t). The function Ĝ(s) is called the transfer
function between input u and output y and represents the zero-state, input/output response of the
system. Notationally, we will often write Ĝyu to represent the transfer function from u to y so that
we have

Ŷ (s) = Ĝyu(s)Û(s).
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For a system with m inputs and p outputs, a transfer function Ĝ(s) represents a mapping from
C to Rp⇥m. Similar to our definition of norms for signal spaces, we can define norms for Laplace
transforms. For the single-input, single-output (SISO) case we define

kĜk2 =
✓

1

2⇡

Z 1

�1
|Ĝ(j!)|2 d!

◆1/2

, kĜk1 = sup
!

|Ĝ(j!)|.

It is left as an exercise to show that these are actually norms that satisfy the properties in Defini-
tion 1.2. The 2-norm is a measure of the energy of the impulse response of the system by making
use of Parseval’s theorem:

kĜk2 =
Z 1

�1
|G(t)|2 dt.

The 1-norm can be though of in multiple ways: it is the peak value of the frequency response
of the system represented by Ĝ or, equivalently, the distance in the complex plane to the farthest
point on the Nyquist plot of Ĝ (see FBS2e for the definition of the Nyquist plot). It can be shown
that the 1-norm is submultiplicative:

kĜĤk1  kĜk1kĤk1.

For a linear, time-invariant (LTI) state space model of the form

dx

dt
= Ax+Bu, y = Cx+Du,

with x 2 Rn, u 2 R, and y 2 R, it can be shown that the transfer function has the form

Ĝ(s) = C(sI �A)�1
B +D =

n(s)

d(s)

where n(s) and d(s) are polynomials and d(s) has highest order n. The poles of G are the roots
of the denominator polynomial and the zeros of G are the roots of the numerator polynomial. We
say that a transfer function Ĝ is proper if Ĝ(j1) is finite (in which case deg d � degn), strictly
proper if Ĝ(j1) = 0 (deg d > degn), and biproper if Ĝ and Ĝ

�1 are both proper (deg d = degn).
The transfer function is said to be stable if it is analytic in the closed right half-plane (i.e., there
are no right half-plane poles).

The following result is sometimes useful in proofs and derivations.

Theorem 1.1. The 2-norm (respectively 1-norm) of a rational transfer function Ĝ is finite if and
only if Ĝ is strictly proper (respectively proper) and has no poles on the imaginary axis.

1.4 System Norms

Given a norm for input signals and a norm for output signals, we can define the induced norm for
an input/output system. Although this can be done for the general case of nonlinear input/output
systems, we restrict ourselves here to the case of a linear input/output system. We furthermore
assume that the input/output response is represented by the transfer function (hence we consider
only the zero-state response).
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Definition 1.7. The induced a to b norm for a linear system G is given by

kGkb,a = sup
kuka1

kykb where y = G ⇤ u.

The induced a-norm to b-norm for a system is also called the system gain.

Theorem 1.2. Assume that Ĝ is stable and strictly proper and that U ,Y = P(�1,1). Then the
following table summarizes the induced norms of G:

kuk2 kuk1
kyk2 kĜk1 1
kyk1 kĜk2 kGk1

Sketch of proofs.

2-norm to 2-norm. We first show that the 2-norm to 2-norm system gain is less than or equal to
kĜk1:

kyk22 = kŶ k22

=
1

2⇡

Z 1

�1
|Ĝ(j!)|2 · |Û(j!)|2 d!

 kĜk21 · 1

2⇡

Z 1

�1
|Û(j!)|2 d!

 kĜk21 · kÛk22 = kĜk21 · kuk22.

To establish equality it su�ces to show that we can find an input that achieves the bound.
Let !0 be a frequency such that kĜ(j!0)k = kĜk1 (this exists because Ĝ is stable and strictly

proper). Define a signal u✏ such that

|Û✏(j!)| =
(p

⇡/3 if !0 � ✏  !  !0 + ✏

0 otherwise

and hence ku✏k2 = 1. Then

kŶ✏k22 =
1

2⇡

Z !0+✏

!0�✏
|Ĝ(j!)|2

⇣
⇡

✏

⌘
d!

=
1

2⇡

Z !0+✏

!0�✏
|Ĝ(j!0)|2

⇣
⇡

✏

⌘
d! + �✏

= kĜk21ku✏k22 + �✏,

where �✏ represents the error that we obtain by evaluating Ĝ at s = j!0 instead of s = j! in the
integral. By definition �✏ ! 0 as ✏ ! 0 (since Ĝ is continuous) and hence

kŶ0k22 = kĜk21kÛ0k2

and so this input achieves the bound. (Note: to be more formal we need to rely on the fact that U
and Y are Banach spaces.
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1-norm to 2-norm. Consider the bounded input u(t) = 1. This gives a constant output y(t) =
G(0)u(t). Assuming that the system has non-zero gain at ! = 0 then kyk2 = 1. (If the gain is
zero at zero frequency, a similar argument is possible using a sinusoid u = sin(!t).)

2-norm to 1-norm. We make use of the following corollary of the Cauchy-Schwartz inequality:

✓Z t1

t0

u(t)v(t) dt

◆2


✓Z t1

t0

|u(t)|2 dt
◆✓Z t1

t0

|v(t)|2 dt
◆
.

The output satisfies

|y(t)|2 =
✓Z 1

�1
G(t� ⌧)u(⌧) d⌧

◆2


✓Z 1

�1
|G(t� ⌧)|2 d⌧

◆
·
✓Z 1

�1
|u(⌧)|2 d⌧

◆

= kGk22 kuk22 = kĜk22 kuk22.

Since this holds for all t, it follows that

kyk1  kĜk2kuk2.

To get equality, we can apply the signal u(t) = G(�t)/kGk2. We have the kuk2 = 1 and

|y(0)| =
Z 1

�1
G(�t)G(�t)/kGk2 dt = kGk2.

So kyk1 � |y(0)| = kĜk2kuk2. Combining the two inequalities we have that kyk1 = kĜk2kuk2.

1-norm to 1-norm. See DFT [4].

1.5 Exercises

1.1 (DFT 2.1) Suppose that u(t) is a continuous signal whose derivative u̇(t) is also continuous.
Which of the following quantities qualifies as a norm for u:

(a) supt |u̇(t)|

(b) |u(0)|+ supt |u̇(t)|

(c) max{supt |u(t)|, supt |u̇(t)|}

(d) supt |u(t)|+ supt |u̇(t)|

Make sure to give a thorough answer (not just yes or no).
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1.2 (DFT 2.2) Consider the Venn diagram in Figure 2.1 of DFT. Show that the functions u1 to
u9, defined below, are located in the diagram as shown in Figure 2.2. All the functions are zero for
t < 0xs.

u1(t) =

(
1/
p
t, if t  1

0, if t > 1

u2(t) =

(
1/t

1
4 , if t  1

0, if t > 1

u3(t) = 1

u4(t) = 1/(1 + t)

u5(t) = u2 + u4

u6(t) = 0

u7(t) = u2(t) + 1

1.3 (DFT 2.4) Let D be a pure time delay of ⌧ seconds with transfer function

bD(s) = e
�s⌧

.

A norm k · k on transfer functions is time-delay invariant if for every bounded transfer function bG
and every ⌧ > 0 we have

k bD bGk = k bGk

Determine if the 2-norm and 1-norm are time-delay invariant.

1.4 Consider a discrete time system having dynamics

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k],

where x[k] 2 Rn is the state of the system at time k 2 Z, u[k] 2 R is the (scalar) input for the
system, y[k] 2 R is the (scalar) output for the system and A, B, and C are constant matrices of the
appropriate size. We use the notation x[k] = x(kh) to represent the state of the system at discrete
time k where h 2 R is the sampling time (and similarly for u[k] and y[k]).

Let T = [0, h, . . . , Nh] represent a discrete time range, with N 2 Z.

(a) Considered as a dynamical system over T , what is the input space U , output space Y, and state
space ⌃ corresponding to the dynamics above? Show that each of these spaces is a linear space by
verifying the required properties (you may assume that Rp is a linear space for appropriate p).

(b) What is the state transition function s(t1, t0, x0, u( · ))? Show that this function satisfies the
state transition axiom and the semi-group axiom.

(c) What is the readout function r(t, x, u)? Show that the input/output system is a linear in-
put/output dynamical system over T .

(d) What is the zero-input response for the system? What is the zero-state response for the system?
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1.5 (DFT 2.5) Compute the 1-norm of the impulse response corresponding to the transfer function

1

⌧s+ 1
⌧ > 0.

1.6 (DFT 2.6) For Ĝ stable and strictly proper, show that kGk1 < 1 and find an inequality relating
kĜk1 and kGk1. (Remember that G represents the impulse response corresponding to the transfer
function Ĝ.)

1.7 (DFT 2.7) Derive the 1-norm to 1-norm system gain for a stable, proper plant bG. (Hint:
write bG = c+ bG1 where c is a constant and bG1 is strictly proper.)

1.8 (DFT 2.8) Let bG be the transfer function for a stable, proper plant (but not necessarily strictly
proper).

(a) Show that the 1-norm of the output y given an input u(t) = sin(!t) is | bG(jw)|.

(b) Show that the 2-norm to 2-norm system gain for bG is k bGk1 (just as in the strictly proper
case).

1.9 (DFT 2.10) Consider a system with transfer function

bG(s) =
s+ 2

4s+ 1

and input u and output y. Compute

kGk1 = sup
kuk1=1

kyk1

and find an input that achieves the supremum.

1.10 (DFT 2.12) For a linear system with input u and output y, prove that

sup
kuk1

kyk = sup
kuk=1

kyk

where k · k is any norm on signals.

1.11 Consider a second order mechanical system with transfer function

bG(s) =
1

s2 + 2!n⇣s+ !2
n

(!n is the natural frequency of the system and ⇣ is the damping ratio). Setting !n = 1, plot the
1-norm as a function of the damping ratio ⇣ > 0. (You may use a computer to to this, but if you
do then make sure to turn in a copy of your code with your solutions.)
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Chapter 2

Linear Input/Output Systems

2.1 Matrix Exponential

Let x(t) 2 Rn represent that state of a system whose dynamics satisfy the linear di↵erential equation

d

dt
x(t) = Ax(t), A 2 Rn⇥n

, t 2 [0,1).

The initial value problem is to find x(t) given x(0). The approach that we take is to show that there
is a unique solution of the form x(t) = e

At
x(0) and then determine the properties of the solution

(e.g., stability) as a function of the properties of the matrix A.

Definition 2.1. Let S 2 Rn⇥n be a square matrix. The matrix exponential of S is given by

e
S = I + S +

1

2
S
2 +

1

3!
S
2 + · · ·+ 1

k!
S
k + . . .

Proposition 2.1. The series
P1

k=0
1
k!S

k converges for all S 2 Rn⇥n.

Proof. Simple case: Suppose S has a basis of eigenvectors {v1, . . . , vn}. Then

e
S
vi = (I + S + · · ·+ 1

k!
S
k + . . . )vi

= (1 + �i + · · ·+ 1

k!
�
k
i + . . . )vi

= e
�ivi,

which implies that eSx is well defined and finite (since this is true for all basis elements.
General case: Let kSk = a. Then

k 1

k!
S
kk  1

k!
kSkk =

a
k

k!
.

Hence

keSk 
1X

k=1

a
k

k!
= e

a = e
kSk

and so e
S
x is well-defined and finite.
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Proposition 2.2. If P, T 2 Rn ! Rn and S = PTP
�1 then

e
S = e

PTP�1
= Pe

T
P

�1
.

Proof.

e
S =

X 1

k!
S
k =

X 1

k!
(PTP

�1)k

= . . .
1

k!
(PTP

�1) · (PTP
�1) · · · (PTP

�1) · · ·

=
X 1

k!
PT

k
P

�1) = P

⇣X T
k

k!

⌘
P

�1) = Pe
T
P

�1
.

Proposition 2.3. If S, T : Rn ! Rn commute (ST = TS) then e
S+T = e

S
e
T .

Proof. (basic idea) The first few terms of expansion for the matrix exponential are given by

(S + T )0 = I

(S + T )1 = S + T

(S + T )2 = (S + T )(S + T ) = S
2 + ST + TS + T

2

= S
2 + 2ST + T

2 only if ST = TS!

(S + T )0 = (S + T )(S + T )(S + T )

= S
3 + S

2
T + STS + ST

2 + TS
2 + TST + T

2
S + T

3

= S
3 + 3S2

T + 3ST 2 + T
2 only if ST = TS!.

The general form becomes

(S + T )k =
kX

i=1

✓
k

i

◆
S
i
T
k�i

| {z }
binomial theorem

=
kX

i=1

k!

i!(k � i)!
S
i
T
k�i

.

2.2 Convolution Equation

We now extend our results to include an input. Consider the non-autonomous di↵erential equation

ẋ = Ax+ b(t), x(0) = x0. (S2.1)

Theorem 2.4. If b(t) is a (piecewise) continuous signal, then there is a unique x(t) satisfying
equation (S2.1) given by

x(t) = e
At
x0 +

Z t

0
e
T (t�⌧)

b(⌧) d⌧.
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Proof. (existence only) Note that x(0) = x0 and

d

dt
x(t) = Ax(t) +

d

dt

✓
e
At
Z t

0
e
�A⌧

b(⌧) d⌧

◆

= Ax(t) = Ae
At

✓Z t

0
e
�A⌧

b(⌧) d⌧

◆
+ e

At
�
e
�At

b(t)
�

=


Ax(t) +A

Z t

0
e
A(t�⌧)

b(⌧) d⌧

�
+ b(t)

= Ax(t) + b(t).

Note that the form of the solution is a combination of the initial condition response (eAt
x0) and

the forced response (
R t
0 . . . ). Linearity in the initial condition and the input follows from linearity

of matrix multiplication and integration.
An alternative form of the solution can be obtained by defining the fundamental matrix �(t) =

e
At as the solution of the matrix di↵erential equation

�̇ = A�, �(0) = I.

Then the solution can be written as

x(t) = �(t)x0 +

Z t

0
�(t� ⌧)b(⌧) d⌧

| {z }
convolution of � and b(t)

.

� thus acts as a Green’s function.
A common situation is that b(t) = B · a sin(!t) where B 2 Rn is a vector and a sin(!t) is a

sinusoid with amplitude a and frequency !. In addition, we wish to consider a specific combination
of states y = Cx, where C : Rn ! R:

ẋ(t) = Ax+Bu(t) u(t) = a sin(!t)

y(t) = Cx x(0) = x0.
(S2.2)

Theorem 2.5. Let H(s) = C(sI � A)�1
B and define M = |H(i!)|, � = argH(i!). Then the

sinusoidal response for the system in equation (S2.2) is given by

y(t) = Ce
At
x(0) + aM sin(!t+ �).

A proof can be found in FBS or worked out by using sin(!t) = 1
2(e

i!t � e
�i!t). The function

H(i!) gives the frequency response for the linear system. The function H : C ! C is called the
transfer function for the system.

2.3 Linear System Subspaces

To study the properties of a linear dynamical system, we study the properties of the eigenvalues
and eigenvectors of the dynamics matrix A 2 Rn⇥n. We will make use of the Jordan canonical form
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for a matrix. Recall that given any matrix A 2 Rn⇥n there exists a transformation T 2 Cn⇥n such
that

J = TA
�1

T =

2

64
J1 0

. . .

0 JN

3

75 , Jk =

2

66664

�k 1 0

. . .
. . .
. . . 1

0 �k

3

77775
2 Rmk⇥mk .

This is the complex version of the Jordan form. There is also a real version with T 2 Rn⇥n in
which case the Jordan blocks representing complex eigenvalues have the form

Jk =

2

6666666664

ak �bk

bk ak

0 1
1 0

0 0

0
. . .

. . . 0

0 0
. . .

0 1
1 0

0 0 0
ak �bk

bk ak

3

7777777775

In both the real and complex cases the transformation matrices T consist of a set of generalized
eigenvectors wk1 , . . . , wkmk

corresponding to the eigenvalue �k.

Returning now to the dynamics of a linear system, let A 2 Rn⇥n be a square matrix representing
the dynamics matrix with eigenvalues �j = aj + ibj and corresponding (generalized) eigenvectors
wj = uj + ivj (with vj = 0 if bj = 0). Let B be a basis of Rn given by

B = {u1, . . . , up,| {z }
real �j

up+1, vp+1, . . . , up+q, vp+q| {z }
complex �j

}. (S2.3)

Definition 2.2. Given A 2 Rn and basis vector B as in equation (S2.3), define

1. Stable subspace: Es = span{uj , vj : aj < 0};

2. Unstable subspace: Eu = span{uj , vj : aj > 0};

3. Center subspace: Ec = span{uj , vj : aj = 0}.

These three subspaces can be used to characterize the behavior an unforced linear system. Since
E

s \ E
u = {0}, Es \ E

c = {0}, and E
c \ E

u = {0}, it follows that any vector x can be written as
a unique decomposition

x = u+ v + w, u 2 E
s
, v 2 E

c
, w 2 E

u
,

and thus Rn = E
s � E

c � E
u where � is the direct sum of two linear subspaces, defined as

S1 �S2 = {u+ v : u 2 S1, v 2 S2}. If all eigenvalues of A have nonzero real part, so that Ec = {0}
then the linear system ẋ = Ax is said to be hyperbolic.

Definition 2.3. A subspace E ⇢ Rn is invariant with represent to the matrix A 2 Rn⇥n if AE ⇢ E

and is invariant with respect to the flow e
At : Rn ! Rn if eAt

E ⇢ E for all t.
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Proposition 2.6. Let E be the generalized eigenspace of A corresponding to an eigenvalue �. Then
AE ⇢ E.

Proof. Let {v1, . . . , vk} be a basis for the generalized eigenspace of A. Then for every v 2 E we
can write

v =
X

↵jvj =) Av =
X

↵jAvj

where ↵j is the eigenvalue for the generalized eigenspace. Since v1, . . . , vk space the generalized
eigenvectors, we know that (�I�A)kj vj = 0 for some minimal kj associated with vj . It follows that

(A� �I)vj 2 ker(A� �I)kj�1 ⇢ E

and hence Avj = w + ↵jvj where w 2 E, which implies that Avj 2 E.

Proposition 2.7. The subspaces E
s, Ec, and E

u are all invariant under A and e
At.

Proof. Invariance under A follows from Proposition 2.6. To show invariance of the flow note that

e
At = (I +At+

1

2
A

2
t
2 + . . . )

so
e
At
E ⇢ E �AE �A

2
E � · · · ⇢ E.

Theorem 2.8 (Stability of linear systems). The following statements are equivalent

1. E
s = Rn (i.e., all eigenvalues have negative real part);

2. For all x0 2 Rn, limt!1 e
At
x0 = 0 (trajectories converge to the origin);

3. There exist constants a, c,m,M > 0 such that

me
�atkx0k  keAt

x0k  Me
�ctkx0k

(exponential rate of convergence).

Proof. To show the equivalence of (1) and (2) we assume without loss of generality that the matrix
is transformed into (real) Jordan canonical form. It can be shown that each Jordan block Jk can
be decomposed into a diagonal matrix Sk = �kI and a nilpotent matrix Nk consisting of 1’s on the
superdiagonal. The properties of the decomposition Jk = Sk + Nk are that Sk and Nk commute
and N

mk
k = 0 (so that Nk is nilpotent). From these two properties we have that

e
Jkt = e

�kIte
Nkt = e

�kt(I +Nk +
1

2
N

2
t
2 + · · ·+ 1

(mk � 1)!
N

mk�1
t
mk�1).

A similar decomposition is possible for complex eigenvalues, with the diagonal elements of eSkt

taking the form

e
akt


cos(bkt) � sin(bkt)
sin(bkt) cos(bkt)

�
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and the matrix Nk being a block matrix with superdiagonal elements given by the 2 ⇥ 2 identity
matrix.

For the real blocks we have �k < 0 and for the complex blocks we have the ak < 0 and it follows
that eJt ! 0 as t ! 1 (making use of the fact that e�ttm ! 0 for any � > 0 and m � 0). It follows
that (1) and (2) are thus equivalent.

To show (3) we need two additional facts, which we state without proof.

Lemma 2.9. Let T 2 Rn⇥n be an invertible transformation and let y = Tx. Then there exists
constants m and M such that

mkxk  kyk  Mkxk.

Lemma 2.10. Let A 2 Rn⇥n and assume ↵ < |Re (�)| < � for all eigenvalues �. Then there exists
a set of coordinates y = Tx such that

↵kyk2  y
T (TAT�1)y  �kyk2.

Using these two lemmas we can account for the transformation in converting the system into
Jordan canonical form. The only remaining element to prove is that a function of the form h(t) =
e
�kttm < �e

�t for some � and � > 0. This follows from the fact that a function of the form e
�✏t

t
m
l

is continuous and zero at t = 0 and at t = 1 and thus e�✏t
t
m
l is bounded above and below. From

this we can show (with a bit more work) that for any Jordan block Jk there exists � > 0 and
�k < � < 0 such that me

�at
< keJktx0k < Me

�ct where a < �k < c < 0. The full result follows by
combining all of the various bounds.

A number of other stability results can be derived along the same lines as the arguments above.
For example, if Rn = E

u (all eigenvalues have positive real part) then all solutions to the initial
value problem diverge, exponentially fast. If Rn = E

u � E
s then we have a mixture of stable and

unstable spaces. Any initial condition with a component in E
u diverges, but if x0 2 E

s then the
solution converges to zero.

The unresolved case is when E
c 6= {0}. In this case, the solutions corresponding to this subspace

will have the form

(I +Nt+
1

2
N

2
t
2 + · · ·+ 1

k!
N

k
t
k

for real eigenvalues and

cos(bkt) � sin(bkt)
sin(bkt) cos(bkt)

�
(I +Nt+

1

2
N

2
t
2 + · · ·+ 1

k!
N

k
t
k

for complex eigenvalues. Convergence in this subspace depends on N . If N = 0 then the solutions
remain bounded but do not converge to the original (stable in the sense of Lyapunov). If N 6= 0
the solutions diverge, but closer than the exponential case. The case of a nonlinear system whose
linearization as a non-trivial center subspace leads to a center “manifold” for the nonlinear system
and stability depends on the nonlinear characteristics of the system.

2.4 Input/output stability

A system is called bounded input/bounded output (BIBO) stable if a bounded input gives a
bounded output for all initial states. A system is called input to state stable (ISS) if kx(t)k 
�(kx(0)k)+�(kuk) where � and � are monotonically increasing functions that vanish at the origin.
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2.5 Time-Varying Systems

Suppose that we have a time-varying (“non-autonomous”), nonhomogeneous linear system with
dynamics of the form

dx

dt
= A(t)x+ b(t),

y = C(t)x+ d(t),
x(0) = x0. (S2.4)

A matrix �(t, s) 2 Rn⇥n is called the fundamental matrix for ẋ = A(t)x if

1. d
dt�(t, s) = A(t)�(t, s) for all s;

2. �(s, s) = I;

3. det�(t, s) 6= for all s, t.

Proposition 2.11. If �(t, s) exists for ẋ = A(t)x then the solution to equation (S2.4) is given by

x(t) = �(t, 0)x0 +

Z t

0
�(t, ⌧)b(⌧) d⌧.

This solution generalizes the solution for linear time-invariant systems and we see that the
structure of the solution—an initial condition response combined with a convolution integral—is
preserved. If A(t) = A is a constant, then �(t, s) = e

A(t�s) and we recover our previous solu-
tion. The matrix �(t, s) is also called the state transition matrix since x(t) = �(t, s)x(s) and
�(t, ⌧)�(⌧, s) = �(t, s) for all t > ⌧ > s. Solutions for �(t, s) exists for many di↵erent time-varying
systems, including periodic systems, systems that are su�ciently smooth and bounded, etc.

Example 2.1. Let

A(t) =


�1 e

at

0 �1

�
.

To find �(t, s) we have to solve the matrix di↵erential equation


�̇11 �̇12

�̇21 �̇22

�
=


�1 e

at

0�1

� 
�11 �12

�21 �22

�
,

with �(s, s) = I, which serves as an initial condition for the system. We can break the matrix
equation into its individual elements. Beginning with the equations for the bottom row of the
matrix, we have

�̇21 = ��21 =) �21(t, s) = e
�(t�s)�21(s, s) = 0,

�̇22 = ��22 =) �22(t, s) = e
�(t�s)�22(s, s) = e

�(t�s)
.

Now use �21 and �22 to solve for �11 and �12:

�̇11 = ��11 =) �11(t, s) = e
�(t�s)

�̇12 = ��12 + e
at
e
�(t�s) = ��12(t, s) = e

(a�1)t+s
.
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This last equation is of the form ẋ = �x+ b(t) and so we can solve it using the solution for a linear
di↵erential equation:

�12(t, s) = e
�(t�s)�12(s, s) +

Z t

s
e
�(t�⌧)

e
(a�1)⌧+s

d⌧

= e
�(t�s)

Z t

s
e
a⌧

d⌧ = e
�(t�s)

✓
1

a
e
a⌧

◆����
t

s

= e
�(t�s)

✓
1

a
e
at � 1

a
e
as

◆

=
1

a
e
at�(t�s) � 1

a
e
as�(t�s)

.

Combining all of the elements, the fundamental matrix is thus given by

�(t, s) =


e
�(t�s) 1

a

�
e
at�(t�s) � e

as�(t�s)
�

0 e
�(t�s)

�
.

The properties of the fundamental matrix can be verified by direct calculation (and are left to the
reader).

The solution for the unforced system (b(t) = 0) is given by

x(t) = �(t, 0)x(0) =


e
�t 1

a

�
e
(a�1)t � e

�t
�

0 e
�t

�
x(0).

We see that although the eigenvalues of A(t) are both �1, if a > 1 then some solutions of the
di↵erential equation diverge. This is an example that illustrates that for a linear system ẋ = A(t)x
stability requires more than Re (�A) < 0.

A common situation is one in which A(t) is period with period T :

dx

dt
= A(t)x(t), A(t+ T ) = A(t).

In this case, we can show that the fundamental matrix has the form

�(t+ T, s) = �(T, 0)�(t, s).

This property allows us to compute the fundamental matrix just over the period [0, T ] (e.g., numeri-
cally) and use this to determine the fundamental matrix at any future time. Additional explotation
of the structure of the problem is also possible, as the next theorem illustrates.

Theorem 2.12 (Floquet). Let A(t) be piecewise continuous and T -periodic. Define P (t) 2 Rn⇥n

as
P (t) = �(t, 0)e�Bt

, B = �(T, 0).

Then

1. P (t+ T ) = P (t);

2. P (0) = I and detP (t) 6= 0;
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3. �(t, s) = P (t)eB(t�s)
P

�1(s);

4. If we set z(t) = P
�1(t)x(t) then ż = Bz.

A consequence of this theorem is that in “rotating” ccoordinates z we can determine the stability
properties of the system by examination of the matrix B. In particular, if z(t) ! 0 then x(t) ! 0.
For a proof, see Callier and Desoer [3].

2.6 Exercises

2.1 (FBS2e 6.1) Show that if y(t) is the output of a linear time-invariant system corresponding
to input u(t), then the output corresponding to an input u̇(t) is given by ẏ(t). (Hint: Use the
definition of the derivative: ż(t) = lim✏!0

�
z(t+ ✏)� z(t)

�
/✏.)

2.2 (FBS2e 6.2) Show that a signal u(t) can be decomposed in terms of the impulse function �(t)
as

u(t) =

Z t

0
�(t� ⌧)u(⌧) d⌧

and use this decomposition plus the principle of superposition to show that the response of a
linear, time-invariant system to an input u(t) (assuming a zero initial condition) can be written as
a convolution equation

y(t) =

Z t

0
h(t� ⌧)u(⌧) d⌧,

where h(t) is the impulse response of the system. (Hint: Use the definition of the Riemann inte-
gral.)

2.3 (FBS2e 6.4) Assume that ⇣ < 1 and let !d = !0

p
1� ⇣2. Show that

exp


�⇣!0 !d

�!d �⇣!0

�
t = e

�⇣!0t


cos!dt sin!dt

� sin!dt cos!dt

�
.

Also show that

exp

✓
�!0 !0

0 �!0

�
t

◆
= e

�!0t


1 !0t

0 1

�
.

Use the results of this problem and the convolution equation to compute the unit step response �
for a spring mass system

mq̈ + cq̇ + kq = F

with initial condition x(0).

2.4 (FBS2e 6.6) Consider a linear system with a Jordan form that is non-diagonal.

(a) Prove Proposition 6.3 in Feedback Systems by showing that if the system contains a real eigen-
value � = 0 with a nontrivial Jordan block, then there exists an initial condition with a solution
that grows in time.
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(b) Extend this argument to the case of complex eigenvalues with Re � = 0 by using the block�
Jordan form

Ji =

2

664

0 ! 1 0
�! 0 0 1
0 0 0 !

0 0 �! 0

3

775 .

2.5 (FBS2e 6.8) Consider a linear discrete-time system of the form

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k] +Du[k].

(a) Show that the general form of the output of a discrete-time linear system is given by the
discrete-time convolution equation:

y[k] = CA
k
x[0] +

k�1X

j=0

CA
k�j�1

Bu[j] +Du[k].

(b) Show that a discrete-time linear system is asymptotically stable if and only if all the eigenvalues
of A have a magnitude strictly less than 1.

(c) Show that a discrete-time linear system is unstable if any of the eigenvalues of A have magnitude
greater than 1.

(d) Derive conditions for stability of a discrete-time linear system having one or more eigenvalues
with magnitude identically equal to 1. (Hint: use Jordan form.)

(e) Let u[k] = sin(!k) represent an oscillatory input with frequency ! < ⇡ (to avoid “aliasing”).
Show that the steady-state component of the response has gain M and phase ✓, where

Me
i✓ = C(ei!I �A)�1

B +D.

(f) Show that if we have a nonlinear discrete-time system

x[k + 1] = f(x[k], u[k]), x[k] 2 Rn
, u 2 R,

y[k] = h(x[k], u[k]), y 2 R,

then we can linearize the system around an equilibrium point (xe, ue) by defining the matrices A,
B, C, and D as in equation (6.35).

2.6 Using the computation for the matrix exponential, show that equation (6.11) in Feedback
Systems holds for the case of a 3 ⇥ 3 Jordan block. (Hint: Decompose the matrix into the form
S +N , where S is a diagonal matrix.)

2.7 Consider a stable linear time-invariant system. Assume that the system is initially at rest and
let the input be u = sin!t, where ! is much larger than the magnitudes of the eigenvalues of the
dynamics matrix. Show that the output is approximately given by

y(t) ⇡ |G(i!)| sin
�
!t+ argG(i!)

�
+

1

!
h(t),

where G(s) is the frequency response of the system and h(t) its impulse response.
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2.8 Consider the system

dx

dt
=


0 1
�1 0

�
x+


0
1

�
u, y =

⇥
1 0

⇤
x,

which is stable but not asymptotically stable. Show that if the system is driven by the bounded
input u = cos t then the output is unbounded.
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Chapter 3

Reachability and Stabilization

Preliminary reading The material in this chapter extends the material in Chapter 7 in FBS2e.
Readers should be familiar with the material in Sections 7.1 and 7.2 in preparation for the more
advanced concepts discussed here.

3.1 Concepts and Definitions

Consider an input/output dynamical system D = (U ,⌃,Y, s, r) as defined in Section 1.2.

Definition 3.1 (Reachability). A state xf is reachable from x0 in time T if there exists an input
u : [0, T ] ! Rm such that xf = s(T, t0, x0, u).

If xf is reachable from x0 in time T we will write

x0 
T

xf

or sometimes just x0  xf if there exists some T for which xf is reachable from x0 in time T . The
set of all states that are reachable from x0 in time less than or equal to T is written as

RT (x0) = {xf 2 Rn : x0 
⌧
xf for some ⌧  T}.

Definition 3.2 (Reachable sytem). An input/output dynamical system D is reachable if for every
x0, xf 2 Rn there exists T > 0 such that x0 

T
xf.

.
The notion of reachability captures the property that we can reach a any final point xf starting

from x0 with some choice of input u( · ). In many cases, it will be not be possible to reach all states
xf but it may be possible to reach an open neighborhood of such points.

Definition 3.3 (Small-time local controllability). A system is small-time locally controllable (STLC)
if for any T > 0 the set RT (x0) contains a neighborhood of x0.

The notions of reachability and (small-time local) controllability hold for arbitrary points in
the state space, but we are often most interested in equilibrium points and our ability to stabilize a
system via state feedback. To define this notion more precisely, we specialize to the case of a state
space control systems whose dynamics can be written in the form

dx

dt
= f(x, u), x(0) = x0. (S3.1)
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Definition 3.4 (Stabilizability). A control system with dynamics (S3.1) is stabilizable at an equi-
librium xe if there exists a control law u = ↵(x, xe) such that

dx

dt
= f(x,↵(x, xe)) =: F (x)

is locally asymptotically stable at xe.

The main distinction between reachability and stabilizability is that there may be regions of the
state space that are not reachable via application of appropriate control inputs but the dynamics
may be such that trajectories with initial conditions in those regions of the state space converge
to the origin under the natural dynamics of the system. We will explore this concept more fully in
the special case of linear time-invariant systems.

3.2 Reachability for Linear State Space Systems

Consider a linear, time-invariant system

dx

dt
= Ax+Bu, x(0) = x0, (S3.2)

with x 2 Rn and u 2 Rm, and having state transition function. In this case the state transition
function is given by the convolution equation,

x(t) = s(t, 0, x0, u( · )) = e
At
Bx0 +

Z t

0
e
A(t�⌧)

Bu(⌧) d⌧.

It can be shown that if a linear system is small-time locally controllable at the origin then it is
small-time locally controllable at any point xf , and furthermore that small-time local controllability
is equivalent to reachability between any two points (Exercise 3.9).

The problem of reachability for a linear time-invariant system is the same as the general case:
we wish to find an input u( · ) that can steer the system from an initial condition x0 to a final
condition xf in a given time T . Because the system is linear, without loss of generality we can
take x0 = 0 (if not, replace the final position xf with xf � e

AT
x0. In addition, since the state

space dynamics depend only on the matrices A and B, we will often state that the pair (A,B) is
reachable, stabilizable, etc.

The simplest (and most commonly) used test for reachability for a linear system is to check
that the reachability matrix is full rank:

rank
⇥
B AB · · · A

n�1
B
⇤
= n.

The rank test provides a simple method for checking for reachability, but has the disadvantage that
doesn’t provide any quantitative insight into how “hard” it might be to either reach a given state
or to assign the eigenvalues of the closed loop systems.

A better method of characterizing the reachability properties of a linear system is to make
use of the fact that the system defines a linear map between the input u( · ) 2 U and the state
x(T ) = xf 2 ⌃:

x(T ) = LT u( · ) =
Z T

0
e
A(T�⌧)

Bu(⌧) d⌧. (S3.3)
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Recall that for a linear operator in finite dimensional spaces L : Rm ! Rn with m > n that the
rank of the linear operator L is the same as the rank of the linear operator LL⇤ : Rn ! Rn where
L
⇤ : Rn ! Rm is the adjoint operator (given by L

T in the case of matrices). Furthermore, if L is
surjective (onto) then the least squares inverse of L is given by

L
+ = L

⇤(LL⇤)�1 and LL
+ = I 2 Rn⇥n

. �
More generally, the adjoint operator can be defined on a linear map between Banach spaces by

defining the dual of a Banach space V to be the space V
⇤ of continuous linear functionals on V .

Given a linear function ! 2 V
⇤ we write h!, vi := !(v) to represent the application of the function

! on the element v. In the case of finite dimensional vector spaces we can associate the set V ⇤ with
V and h�, vi is of the form w

T
v where w 2 Rn.

If we have a mapping between linear spaces V and W given by L : V ! W , the adjoint operator
L
⇤ : W ⇤ ! V

⇤ is defined as the unique operator that satisfies

hL⇤
�, vi = h�, Lvi for all v 2 V and � 2 W

⇤
.

Note that the application of the linear function on the left occurs in the space V and on the right
occurs in the space W .

For a signal space U , a linear functional has the form of an integral

h!( · ), u( · )i =
Z 1

0
!(⌧) ·u(⌧) d⌧

and so we can associate each linear function in U⇤ with a function !(t). Given a linear mapping
LT : U ! Rn of the form

LT (u( · )) =
Z T

0
h(T � ⌧)u(⌧) d⌧

it can be shown that the adjoint operator LT
⇤ : Rn ! U⇤ is given by

L⇤
T (t)w

⇤ =

(
hh(T � t), wi if t  T ,

0 otherwise

where w 2 Rn.
To show that a system is reachable, we need to show that LT : U ! Rn given by equation S3.3

is full rank. Using the analysis above, the adjoint operator L⇤
T : Rn ! U⇤ is

(L⇤
T v)(t) = B

T
e
AT(T�t)

v.

As in the finite dimensional case, the dimension of the range of the map LT : U ! Rn is the same
as the dimension of the range of the map LTL⇤

T : Rn ! Rn, which is given by

LTL⇤
T =

Z T

0
e
A(T�⌧)

BB
T
e
AT(T�⌧)

d⌧.

This analysis leads to the following result on reachability for a linear system. 4
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Theorem 3.1 (Gramian test). A pair (A,B) is reachable in time T if and only if

Wc(T ) =

Z T

0
e
A(T�⌧)

BB
T
e
AT(T�⌧)

d⌧ =

Z T

0
e
A⌧

BB
T
e
AT⌧

d⌧

is positive definite.

The matrix Wc(T ) provides a means to compute an input that steers a linear system from the
origin to a point xf 2 Rn. Given T > 0, define

u(t) = B
T
e
AT(T�t)

W
�1
c (T )xf.

It follows from the definition of Wc that x0 
T

xf . Furthermore, it is possible to show that if the

system is reachable for some T > 0 then it is reachable for all T > 0. Note that this computation
of u( · ) corresponds to the computation of the least squares inverse in the finite dimensional case
(u = L⇤

T (LTLT )�1
xf).

Lemma 3.2. If Wc(T ) is positive definite for some T > 0 then it is positive definite for all T > 0.

Proof. We prove the statement by contradiction. Suppose that Wc(T ) is positive definite for a
specific T > 0 but that there exists T

0
> 0 such that rank Wc(T 0) = k < n. Then there exists a

vector v 2 Rn such that vTWc(T 0) = 0 and furthermore

v
T
Wc(T

0)v = v
T

 Z T 0

0
e
A⌧

BB
T
e
AT⌧

v d⌧

!
= 0.

Since the integrand is a symmetric matrix, it follows that we must have

v
T
e
A⌧

BB
T
e
AT⌧

v = 0 for all ⌧  T
0
,

and hence
v
T
e
A⌧

B = 0 =) v
T
B = 0 (evaluating at t = 0)

d

d⌧
(vTeA⌧

B) = v
T
Ae

A⌧
B = 0 =) v

T
AB = 0

...

v
T
A

n�1
B = 0.

Therefore vTeA⌧
B = 0 for all ⌧ (including ⌧ > T

0) and hence vTWc(t) = 0 for all t > 0, contradicting
our original hypothesis.

If the eigenvalues of A all have negative real part, it can be shown that Wc(t) converges to a con-
stant matrix as t ! 1 and we write this matrix as Wc = Wc(1). This matrix is called the control-
lability Gramian. (Note that FBS2e uses Wr to represent the reachability matrix [B AB A

2
B . . . ].

This is di↵erent than the controllability Gramian.)

Theorem 3.3. AWc +WcA
T = �BB

T.
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Proof.

AWc +WcA
T =

Z 1

0
Ae

A⌧
BB

T
e
AT⌧

d⌧ +

Z 1

0
e
A⌧

BB
T
e
AT⌧

A
T
d⌧

=

Z 1

0

d

dt

⇣
e
A⌧

BB
T
e
AT⌧

A
T
⌘
d⌧

=
⇣
e
At
BB

T
e
ATt
⌘���

1

t=0

= 0�BB
T = �BB

T
.

Theorem 3.4. A linear time-invariant control system S3.2 is reachable if and only if Wc is full
rank and the subspace of points that are reachable from the origin is given by the image of Wc.

Proof. Left as an exercise. Use the fact that the range of Wc(T ) is independent of T .

Reachability is best captured by the Gramian since it relates directly to the map between an
input vector and final state, and its norm is related to the di�culty of moving from the origin to an
arbitrary state. Furthermore, the eigenvectors of Wc and the corresponding eigenvalues provide a
measure of how much control e↵ort is required to move in di↵erent directions. There are, however,
several other tests for reachability that can be used for linear systems.

Theorem 3.5. The following conditions are necessary and su�cient for reachability of a linear
time-invariant system:

• Reachability matrix test:
rank

⇥
B AB · · · A

n�1
B
⇤
= n.

• Popov-Belman-Hautus (PBH) test:

rank
⇥
sI �A B

⇤
= n

for all s 2 C (su�ces to check for eigenvalues of A).

Proof. (Incomplete) PBH necessity: Suppose

rank
⇥
�I �A B

⇤
< n.

Then there exists v 6= 0 such that

v
T
⇥
�I �A B

⇤
= 0

and hence xTA = �x
T and x

T
B = 0. It follows that xTA2 = �

2
x
T
, . . . , x

T
A

n�1 = �
n�1

x
T and thus

x
T
⇥
B AB · · · A

n�1
B
⇤
= 0.

For both of these tests, we note that if the corresponding matrix is rank deficient, the left null
space of that matrix gives directions in the state space that are unreachable (more accurately it
consists of the directions in which the projected value of the state is constant along all trajectories
of the system). The set of vectors orthogonal to this left null space defines a subspace V r that
represents the set of reachable states (exercise: prove this is a subspace).
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Theorem 3.6. Assume (A,B) is not reachable. Let rankWc = r < n. Then there exists a
transformation T 2 Rn⇥n such that

TAT
�1 =


A1 A2

0 A3

�
, TB =


B1

0

�
,

where A1 2 Rr⇥r, B1 2 Rr⇥m, and (A1, B1) is reachable.

Proof. (Sketch) Let V r represent the null space of Wc and let B r = {w1, . . . , wn�r} represent a basis
for V r. Complete this basis with a set of vectors {v1, . . . , vr} such that {v1, . . . , vr, w1, . . . , wn�r}
is a basis for Rn. Use these basis vectors as the columns of the transformation T .�

We note that the null space of Wc is uniquely defined, though the basis for that space is
not unique. This subspace represents the set of linear functions on the state space whose values
are constant and hence provides a characterization of the unreachable states of the system. The
complement of that space is not a subspace, although if we look at the points that are reachable
from the origin, this does form a subspace. We will return to this point in more detail when we
discuss the Kalman decomposition in Chapter 5.4

Finally, we note that a system that is reachable can be written in reachable canonical form (see
FBS2e). This is primarily useful for proofs.

3.3 System Norms

3.3.1 State space computation of the 2-norm

Consider a stable state space system with no direct term and with system matrices A, B, and C.
Let Wc be the controllability Gramian for the system and let G(t) represent the impulse response
function for the system and Ĝ(s) represent the corresponding transfer function (Laplace transform
of the impulse response). Recall that the 2-norm to 1-norm gain for a linear input/output system
is given by kĜk2.

Theorem 3.7. kĜk2 =
p
CWcC

T.

Proof. The impulse response function given by

G(t) = Cx�(t) = C

Z t

0
A

A(t�⌧)
B�(⌧) d⌧

= Ce
At
B, t > 0.

The system norm is given by

kĜk22 = kGk22

=

Z 1

0

�
Ce

A⌧
B
��
B

T
e
AT⌧

C
T
�
d⌧

= C

✓Z 1

0
e
At
BB

T
e
AT⌧

d⌧

◆
C

T

= CWcC
T
.
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The more common norm in control system design is the 2-norm to 2-norm system gain, which
is given by kĜk1. To compute the 1-norm of a transfer function, we define

H� =


A

1
�BB

T

�C
T
C �A

T

�
2 R2n⇥2n

.

The system gain can be determined in terms of H� as follows.

Theorem 3.8. kĜk1 < � is an only if H� has no eigenvalues on the j! axis.

Proof. DGKF.

To numerically compute the H1 norm, we can use the bisection method to determine � to
arbitrary accuracy.

3.4 Stabilization via Linear Feedback

We now consider the problem of stabilization, as defined in Definition 3.4. For a linear system, we
will consider feedback laws of the form u = �Kx (the negative sign is a convention associated with
the use of “negative” feedback), so that

dx

dt
= Ax+Bu = (A�BK)x.

One of the goals of introducing negative feedback is to stabilize an otherwise unstable system at the
origin. In addition, state feedback can be used to “design the dynamics” of the close loop system
by attempting to assign the eigenvalues of the closed loop system to specific values.

Theorem 7.3 states that if a (single-input) system is reachable then it is possible to assign
the eigenvalues of the closed loop system to arbitrary values. This turns out to be true for the
multi-input case as well and is proved in a similar manner (by using an appropriate normal form).

Using the decomposition theorem 3.6 it is easy to see that the question of stabilizability for
a linear system comes down to the question of whether the dynamics in the unreachable space
(ż = A3z) are stable, since these eigenvalues cannot be changed through the use of state feedback.

Although eigenvalue placement provides an easy method for designing the dynamics of the
closed loop system, it is rarely used directly since it does not provide any guidelines for trading o↵
the size of the inputs required to stabilize the dynamics versus the properties of the closed loop
response. This is explored in a bit more detail in FBS2e Section 14.6 (Robust Pole Placement).

3.5 Exercises

3.1 (Sontag 3.1.2/3.1.3) Prove the following statements:

(a) If (x,�) (z, ⌧) and (z, ⌧) (y, µ), then (x,�) (y, µ).

(b) If (x,�)  (y, µ) and if � < ⌧ < µ, then there exists a z 2 X such that (x,�)  (z, ⌧) and
(z, ⌧) (y, µ).

(c) If x  
T

y for some T > 0 and if 0 < t < T , then there is some z 2 X such that x  
t

z and
z  

T�t
y.
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(d) If x 
t
z, z  

s
y, and ⌃ is time-invariant, then x  

t+s
y.

(e) If x z, z  y, and ⌃ is time-invariant, then x y.

(f) Given examples that show that properties (d) and (e) may be false if ⌃ is not time-invariant.

(g) Even for time-invariant systems, it is not necessarily true that x  z implies that z  x (so,
“ ” is not an equivalence relation).

3.2 (FBS2e 7.1) Consider the double integrator. Find a piecewise constant control strategy that
drives the system from the origin to the state x = (1, 1).

3.3 (FBS2e 7.2) Extend the argument in Section 7.1 to show that if a system is reachable from an
initial state of zero, it is reachable from a nonzero initial state.

3.4 (FBS2e 7.3) Consider a system with the state x and z described by the equations

dx

dt
= Ax+Bu,

dz

dt
= Az +Bu.

If x(0) = z(0) it follows that x(t) = z(t) for all t regardless of the input that is applied. Show that
this violates the definition of reachability and further show that the reachability matrix Wr is not
full rank. What is the rank of the reachability matrix?

3.5 (FBS2e 7.6) Show that the characteristic polynomial for a system in reachable canonical form
is given by equation (7.7) and that

d
n
zk

dtn
+ a1

d
n�1

zk

dtn�1
+ · · ·+ an�1

dzk

dt
+ anzk =

d
n�k

u

dtn�k
,

where zk is the kth state.

3.6 (FBS2e 7.7) Consider a system in reachable canonical form. Show that the inverse of the
reachability matrix is given by

W̃
�1
r =

2

6666664

1 a1

1
a2 · · · an�1

a1 · · · an�2

0

1
. . .

...
. . . a1

1

3

7777775
.

3.7 (FBS2e 7.10) Consider the system

dx

dt
=


0 1
0 0

�
x+


1
0

�
u, y =

⇥
1 0

⇤
x,

with the control law
u = �k1x1 � k2x2 + kfr.

Compute the rank of the reachability matrix for the system and show that eigenvalues of the system
cannot be assigned to arbitrary values.
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3.8 (FBS2e 7.11) Let A 2 Rn⇥n be a matrix with characteristic polynomial �(s) = det(sI � A) =
s
n + a1s

n�1 + · · ·+ an�1s+ an. Show that the matrix A satisfies

�(A) = A
n + a1A

n�1 + · · ·+ an�1A+ anI = 0,

where the zero on the right hand side represents a matrix of elements with all zeros. Use this
result to show that A

n can be written in terms of lower order powers of A and hence any matrix
polynomial in A can be rewritten using terms of order at most n� 1.

3.9 Show that for a linear time-invariant system, the following notions of controllability are
equivalent:

(a) Reachability to the origin (x0  0).

(b) Reachability from the origin (0 xf).

(c) Small-time local controllability (x0  B(x0, ✏)).

3.10 (Sontag 3.3.4) Assume that the pair (A,B) is not controllable with dimR(A,B) = r < n.
From Lemma 3.3.3, there exists a T 2 GL(n) such that the matrices Ã := T

�1
AT and B̃ := T

�1
B

have the block structure

Ã =


A1 A2

0 A3

�
, B̃ =


B1

0

�
,

where A1 2 Rr⇥r and B1 2 Rr⇥m. Prove that (A1, B1) is itself a controllable pair.

3.11 (Sontag 3.3.6) Prove that if

A =

2

666664

�1 0 · · · 0 0
0 �2 · · · 0 0
...

...
. . .

...
...

0 0 · · · �n�1 0
0 0 · · · 0 �n

3

777775
, B =

2

666664

b1

b2
...

bn�1

bn

3

777775

then (A,B) is controllable if and only if �i 6= �j for each i 6= j and all bi 6= 0.

3.12 (Sontag 3.3.14) Let (A,B) correspond to a time-invariant discrete-time linear system ⌃. Recall
that null-controllability means that every state can be controlled to zero. Prove that the following
conditions are equivalent:

(a) ⌃ is null-controllable.

(b) The image of An is contained in the image of R(A,B).

(c) In the decomposition in Sontag, Lemma 3.3.3, A3 is nilpotent.

(d) rank[�I �A,B] = n for all nonzero � 2 R̃.

(e) rank[�I �A,B] = n for all � 2 R̃.
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