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Problem 1. Suppose that we wish to estimate the position of a particle that is undergoing a
random walk in one dimension (i.e., along a line). We model the position of the particle as

x[k + 1] = x[k] + u[k],

where x is the position of the particle and u is a white noise processes with E{u[i]} = 0 and
E{u[i]u[j]} = Ruδ(i − j). We assume that we can measure x subject to additive, zero-mean,
Gaussian white noise with covariance 1.

(a) Construct a Kalman filter to estimate the position of the particle given the noisy measurements
of its position. Compute the steady-state expected value and covariance of the error of your
estimate.

(b) Suppose that E{u[0]} = µ 6= 0 but is otherwise unchanged. How would your answer to part (a)
change?

Problem 2. Consider a simple spring mass system that has two sensors: a position sensor (based
on GPS) and a velocity sensor. In this problem we will use the predictor-corrector form of the
discrete-time Kalman filter equations to simulate the convergence of the covariance estimate of the
position and velocity of the mass.

The dynamics of the system are given by

mq̈ + bq̇ + kq = v

where m = 10 g is the mass of the system, b = 0.1 N/m/s is the damping coefficient, and k = 1
N/m is the spring constant. We assume that v consists of white noise with intensity 0.1 N.

Assume that the position measurement is done at 5 Hz with an accuracy (standard deviation of
each estimate) of 1 m and that the velocity measurement is done at 20 Hz with an accuracy of 0.1
m/s.

Convert the system to the equivalent discrete-time system, and compute the time history of the
error covariance for the optimal estimate in predictor-corrector form. Plot the diagonal elements
of Pq[k|k] and Pq̇[k|k], corresponding to the accuracy of the position and velocity estimate.

(To handle the fact that the initial estimate is not known, assume that the estimator is initialized
with a (noisy) measurement from the position and velocity sensors.)

Problem 3. Consider the problem of estimating the position of a car operating on a road whose
dynamics are modeled as described in Example 2.3 in OBC. We assume that the car is executing
a lane change manuever and we wish to estimate its position using a set of available sensors:



• A stereo camera pair, which relatively poor longitudinal (x) accuracy but good lateral position
(y) accuracy. We model the covaraiance of the sensor noise as Rlat = diag(1, 0.1).

• An automotive grade radar, which has good longitudinal position (x) accuracy but poor
lateral (y) accuracy, with Rlon = diag(0.1, 1).

• We assume the radar can also measure the longitudinal velocity (ẋ) as an optional measure-
ment, with Rvel = 1.

In this problem we assume that the detailed model of the system is not known and also that the
inputs to the vehicle (throttle and steering) are not known. We use a variety of system models to
explore how these different measurements can be fused to obtain estimates and predictions of the
vehicle position.

(a) Consider a model of the vehicle consisting of a particle in 2D, with the velocity of particle in
the x and y direction taken as the input:

ẋ = u1, ẏ = u2

A discrete-time version of the system dynamics is given by

x[k + 1] = x[k] + u1[k] ∗ Ts, y[k + 1] = y[k] + u2[k] ∗ Ts,

where Ts = 0.1 s is the sampling time between sensor measurements.

Construct an estimator for the system using a combination of the stereo pair and the radar (position
only). Estimate the state and covariance of the system during the lane change manuever from
Example 2.3 and predict the state for the next 4 seconds.

(b) Assume now that we now add (noisy) measurement of the velocity from the radar as an approx-
imation of the input u1. Update your Kalman filter to utilize this measurement (with no filtering),
and replot the estimate and prediction for the system.

(c) To provide a better prediction, we can increase the complexity of our model so that it includes
the velocity of the vehicle as a state, allowing us to model the acceleration as the input. In
continuous time, this model is given by

ẍ = u1, ẏ = u2

(note that we are still modeling the lateral position using a single integrator).

Convert this model to discrete time and construct an estimator for the system using a combination
of the stereo pair and the radar (position and velocity). Estimate the state and covariance of the
system during the lane change manuever and predict the state for the next 4 seconds.

Note: in this problem you have quite a bit of freedom in how you model the disturbances, which
should model the unknown inputs to the vehicle being observed. Make sure to provide some level
of justification for how you chose these disturbances.
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