Goals:

• Review receding horizon control (RHC) for constrained systems
• Describe how to use “differential flatness” to implement RHC
• Give examples of implementation on the Caltech ducted fan, satellites, etc
Control Architecture: Two DOF Design

Nonlinear design
• global nonlinearities
• input saturation
• state space constraints

Local design

Plant P

Δ

noise

output

Trajectory Generation

ref

u_d

x_d

δ u

Local Control

“RHC”

Optimal Control

LQR/PID

• Use nonlinear trajectory generation to construct (optimal) feasible trajectories
• Use local control to handle uncertainty and small scale (fast) disturbances
• Receding horizon control: iterate trajectory generation during operation

Murray, Hauser et al
SEC chapter (IEEE, 2002)
Solve finite time optimization over T seconds and implement first ΔT seconds

$$u_{[t, t+\Delta T]} = \arg \min \int_t^{t+T} L(x(\tau), u(\tau)) d\tau + V(x(t + T))$$

$$x_0 = x(t) \quad x_f = x_d(t + T)$$

$${\dot x} = f(x, u) \quad g(x, u) \leq 0$$

Requires that computation time be small relative to time horizons

- Initial implementation in process control, where time scales are fairly slow
- Real-time trajectory generation enables implementation on faster systems
Additional Concepts for Receding Horizon Control

Discrete time systems
- "Clocked" transition between states
- New state is function of current state + inputs
- State is represented as a continuous variable

Optimization-based control for discrete time systems
- Same approach: parameterize inputs and/or states
- Cost functions: integrals become sums
 \[J(x[·], u[·]) = \sum_{k=0}^{N-1} L(x[k], u[k]) + V(x[N], u[N]) \]
- Python: `solve_ocp()` and `create_mpc_iosystem()`

RHC versus layered
- Pure RHC/MPC: close the entire loop via RHC
- Layered: use RHC for trajectory, track via "inner loop" (local control)
 - Allows for slower RHC update with good performance
 - Use inner loop to handle disturbances/noise
Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

$$\min J = \int_{t_0}^{T} L(x, u) \, dt + V(x(T), u(T))$$

subject to

$$\dot{x} = f(x, u) \quad g(x, u) \leq 0$$

If system is flat, once again we get an algebraic problem:

$$\begin{align*}
x &= x(z, \dot{z}, \ldots, z^{(q)}) \\
u &= u(z, \dot{z}, \ldots, z^{(q)}) \\
z &= \sum \alpha_i \psi^i(t)
\end{align*}$$

$$\begin{align*}
\min J &= \int_{t_0}^{T} L(\alpha, t) \, dt + V(\alpha) \\
g(\alpha, t) &\leq 0
\end{align*}$$

• Constraints hold at all times ⇒ potentially over-constrained optimization
• Numerically solve by discretizing time (collocation)
Rewrite flat outputs in terms of splines

\[z_j = \sum_{i=1}^{p_j} B_{i,k_j}(t)C_i^j \quad \text{for the knot sequence } t_j \]

\[p_j = l_j(k_j - m_j) + m_j \]

Evaluate constrained optimization at collocation points:

\[\min_{C \in \mathbb{R}^M} J(\tilde{z}(t_i)) \quad \text{subject to } \quad lb \leq c(\tilde{z}(t_i)) \leq ub \]

\[B_{i,k_j} = \text{basis functions} \]
\[C_i^j = \text{coefficients} \]
\[z_i = \text{flat outputs} \]
Application: Caltech Ducted Fan

Flight Dynamics

\[m \ddot{x} = -D \cos \gamma - L \sin \gamma + F_{X_b} \cos \theta + F_{Z_b} \sin \theta \]
\[m \ddot{z} = D \sin \gamma - L \cos \gamma - m g_{eff} + F_{X_b} \sin \theta + F_{Z_b} \cos \theta \]
\[J \ddot{\theta} = M_a - \frac{1}{r_s} I_p \Omega \dot{x} \cos \theta + M_T \]
\[\alpha = \theta - \gamma, \quad \text{angle of attack} \]
\[\gamma = \tan^{-1} \frac{-\dot{z}}{\dot{x}}, \quad \text{flight path angle} \]

Trajectory Generation

• System is approximately flat, even with aerodynamic forces
• More efficient to over-parameterize the outputs; use \(z = (x, y, \theta) \)
• Input constraints: max thrust, flap limits, flap rates

\[L = \frac{1}{2} \rho V^2 S C_L(\alpha) \]
\[D = \frac{1}{2} \rho V^2 S C_D(\alpha) \]
\[M_a = \frac{1}{2} \bar{c} \rho V^2 S C_M(\alpha) \]
Implementation using NTG Software Library

Features
- Handles constraints
- Very fast (real-time), especially from warm start
- Good convergence

Weaknesses
- No convergence proofs
- Misses constraints between collocation points
- Doesn’t exploit mechanical structure (except through flatness)

Planar Ducted Fan: Warm Starts

https://github.com/murrayrm/ntg
http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
Example: Trajectory Generation for the Ducted Fan

Caltech Ducted Fan
- Ducted fan engine with vectored thrust
- Airfoil to provide lift in forward flight mode
- Design to emulate longitudinal flight dynamics
- Control via dSPACE-based real-time controller

Trajectory Generation Task: point to point motion avoiding obstacles
- Use differential flatness to represent trajectories satisfying dynamics
- Use B-splines to parameterize trajectories
- Solve constrained optimization to avoid obstacles, satisfy thrust limits
From Real-Time Trajectory Generation to RHC

Three key elements for making RHC fast enough for motion control applications

- *Fast computation* to optimize over many variables quickly
- *Differential flatness* to minimize the number of dynamic constraints
- *Optimized algorithms* including B splines, colocation, and SQP solvers

Use of feedback allows substantial approximation

- OK to approximate computations since result will be recomputed using actual state
- NTG exploits this principle through the use of collocation

Can further optimize to take into account finite computation times

Tuning tricks

- Compute predicted state to account for computation times
- Optimize collocation times and optimization horizon
- Choose sufficiently smooth spline basis
Experiments: Caltech Ducted Fan

Real-Time RHC on Caltech Ducted Fan (Aug 01)
- NTG with quasi-flat outputs + Lyapunov CLF
- Average computation time of ~100 msec
- Inner (pitch) loop closed using local control law; RHC for position variables
- Inner/outer tradeoff: how much can be pushed into optimization
Highly Aggressive Constrained Turnaround

- **Goal:** -5 to 5 m/s. Final x position arbitrary, z within state constraint, Thrust vectoring within constraints
- **Initial guess:** Random
- **Computation Time:** 1.12 sec Sparc Ultra 10 83.3% CPU usage
- **6th order B-splines, seven intervals for each output, 30 equally spaced collocation points**
- **Full aerodynamic model**
Example: Flight Control

dSPACE-based control system
- Two C30 DSPs + two 500 MHz DEC/Compaq/HP Alpha processors
- Effective servo rates of 20 Hz (guidance loop)
Trajectory Generation for Non-Flat Systems

If system is not fully flat, can still apply NTG

\[\dot{x} = f(x, u) \]
\[z = z(x, u, \dot{u}, \ldots, u^{(q)}) \]
\[y = h(x, u) \]
\[x = x(z, \dot{z}, \ldots, z^{(q)}) \]
\[u = u(z, \dot{z}, \ldots, z^{(q)}) \]
\[(x, u) = \Gamma(y, \dot{y}, \ldots, y^{(q)}) \]
\[0 = \Phi(y, \dot{y}, \ldots, y^{(p)}) \]

When system is not flat, use quasi-collocation

- Choose output \(y = h(x, u) \) that can be used to compute the full state and input
- Remaining dynamics are treated as constraints for trajectory generation
- Example: chain of integrators

\[\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= u \\
y_1 &= x_1 \\
y_2 &= x_2
\end{align*} \]
\[\begin{align*}
x_1 &= y_1 \\
x_2 &= y_2 \\
u &= \dot{y}_2
\end{align*} \]
\[\begin{align*}
\dot{x}(t_i) &= f(x(t_i), u(t_i)) \\
(x, u) &= \sum \alpha_i \psi^i(t)
\end{align*} \]

Can also do full collocation (treat all dynamics as constraints)

Each equation gives constraints at collocation points \(\Rightarrow \) highly constrained optimization
Effect of Defect on Computation Time

Defect as a measure of flatness

- Defect = number of remaining differential equations
- Defect 0 ⇒ differentially flat

Sample problem: 5 states, 1 input

- \(x_1 \) is possible flat output
- Can choose other outputs to get systems with nonzero defect
- 200 runs per case, with random initial guess

Computation time related to defect through power law

- SQP scales cubically ⇒ minimize the number of free variables

\[
\begin{align*}
\dot{x}_1 &= 5x_2 \\
\dot{x}_2 &= \sin x_1 + x_2^2 + 5x_3 \\
\dot{x}_3 &= -x_1x_2 + x_3 + 5x_4 \\
\dot{x}_4 &= x_1x_2x_3 + x_2x_3 + x_4 + 5x_5 \\
\dot{x}_5 &= -x_5 + u
\end{align*}
\]

Dramatic speedup through reduction of differential constraints
Receding horizon control (RHC) for constrained systems
- Allows nonlinear dynamics + input and state constraints
- Need to be careful with terminal conditions to insure stability

Differential flatness is an enabler for practical implementation of RHC
- Allows fast computation of (optimal) trajectories
- NTG can be used to implement RHC; works for (slightly) non-flat systems

Caltech ducted fan implementation illustrates applicability of results
- Real-time control on representative flight control platform with no inner loop
- Extensions to multi-vehicle testbed are being implemented