I. Review from Wed

A. Use PI properties
 - Avoid amplifying r by using y for derivative
 - Filter derivative to attenuate high frequency noise
 - Integral action to offset disturbances and model error

B. Integral Feedback

Claim: if system is stable, \(e \to 0 \) (even \(w \) does not go to 0)

"LP" if stable, then \(\int s dt \to 0 \) (\(x_e, u_e \))

\[u = k_pe + k_de + k_ife \]

If \(e \neq 0 \) then \(u \to \infty \) \(\Rightarrow e \to 0 \)

Note: integral action is much more general than PID \(u = y_0 - k(x-x_0) - k_e \frac{dy}{dx} \)

C. Loop shaping w/ PID

[Diagram showing gain and phase response]

II. Controller implementation

\[G(s) \rightarrow C(sI - A)^{-1}B + D \]

\[\dot{x} = Ax + Bu \]

\[y = Cx + Du \]

"realization"

\[\dot{x} = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \]

\[x(t+h) = x(t) + hf(t) \]

\[y(t) = h(x, u) \]

Implement on computer w/ fixed sampling time \(\Delta t = h \)