Python Tools for Analyzing Linear Systems

CDS 110/ChE 105, Winter 2024
Richard M. Murray

In this lecture we describe tools in the Python Control Systems Toolbox (python-control) that can be used to analyze linear systems, including some of the options available to present the information in different ways.

```
In [1]:
    import numpy as np
    import matplotlib.pyplot as plt

    try:
        import control as ct
        print("python-control version:", ct.__version__)
    except ImportError:
        # Version 0.10.0 is enough for this notebook
        !pip install control
        import control as ct

python-control version: 0.10.0
```

Coupled mass spring system

Consider the spring mass system below:

![Coupled mass spring system diagram](image)

We wish to analyze the time and frequency response of this system using a variety of python-control functions for linear systems analysis.

System dynamics

The dynamics of the system can be written as

\[
\begin{align*}
 m\ddot{q}_1 &= -2kq_1 - c\dot{q}_1 + kq_2, \\
 m\ddot{q}_2 &= kq_1 - 2kq_2 - c\dot{q}_2 + ku
\end{align*}
\]

or in state space form:
\[
\frac{dx}{dt} = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{2k}{m} & \frac{k}{m} & -\frac{c}{m} & 0 \\
\frac{k}{m} & -\frac{2k}{m} & 0 & -\frac{c}{m}
\end{bmatrix} x + \begin{bmatrix}
0 \\
0 \\
0 \\
\frac{k}{m}
\end{bmatrix} u.
\]

In [2]:
Define the parameters for the system
m, c, k = 1, 0.1, 2
Create a linear system
A = np.array([
 [0, 0, 1, 0],
 [0, 0, 0, 1],
 [-2*k/m, k/m, -c/m, 0],
 [k/m, -2*k/m, 0, -c/m]
])
B = np.array([[0], [0], [0], [k/m]])
C = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
D = 0

sys = ct.ss(A, B, C, D, outputs=['q1', 'q2'], name="coupled spring mass")
print(sys)

<StateSpace>: coupled spring mass
Inputs (1): ['u[0]']
Outputs (2): ['q1', 'q2']
States (4): ['x[0]', 'x[1]', 'x[2]', 'x[3]']

A = [[0, 0, 1, 0]
 [0, 0, 0, 1]
 [-4, 2, -0.1, 0]
 [2, -4, 0, -0.1]]

B = [[0.0]]
 [0.0]
 [2.0]

C = [[1.0, 0.0, 0.0]
 [0.0, 1.0, 0.0]]

D = [[0.0]
 [0.0]]

Another way to get these same dynamics is to define and input/output system:

In [3]:
coupled_params = {'m': 1, 'c': 0.1, 'k': 2}
def coupled_update(t, x, u, params):
 m, c, k = params['m'], params['c'], params['k']
 return np.array([x[2], x[3], -2*k/m * x[0] + k/m * x[1] - c/m * x[2],...}
\[
\frac{k}{m} \times x[0] - 2 \frac{k}{m} \times x[1] - \frac{c}{m} \times x[3] + \frac{k}{m} \times u[0]
\]

```python
def coupled_output(t, x, u, params):
    return x[0:2]
coupled = ct.nlsys(
    coupled_update, coupled_output, inputs=1, outputs=['q1', 'q2'],
    states=['q1', 'q2', 'q1dot', 'q2dot'], name='coupled (nl)',
    params=coupled_params)
print(coupled.linearize([0, 0, 0, 0], [0]))
<StateSpace>: sys[0]
Inputs (1): ['u[0]']
Outputs (2): ['y[0]', 'y[1]']
States (4): ['x[0]', 'x[1]', 'x[2]', 'x[3]']

A = [[0, 0, 1, 0],
     [0, 0, 0, 1],
     [-4, 2, -0.1, 0],
     [2, -4, 0, -0.1]]
B = [[0],
     [0],
     [0]]
C = [[1, 0, 0, 0],
     [0, 1, 0, 0]]
D = [[0],
     [0]]

**Initial response**

The `initial_response` function can be used to compute the response of the system with no input, but starting from a given initial condition. This function returns a response object, we can be used for plotting.

```python
In [4]: response = ct.initial_response(sys, X0=[1, 0, 0, 0])
response.plot()
```

Out[4]:

```
array([[[<matplotlib.lines.Line2D object at 0x11851a240>]],
 [list([<matplotlib.lines.Line2D object at 0x11b6cf110>])]]),
dtype=object)
```
If you want to play around with the way the data are plotted, you can also use the response object to get direct access to the states and outputs.

```python
In [5]: # Plot the outputs of the system on the same graph, in different colors
t = response.time
x = response.states
plt.plot(t, x[0], 'b', t, x[1], 'r')
plt.legend(['x_1', 'x_2'])
plt.xlim(0, 50)
plt.ylabel('States')
plt.xlabel('Time [s]')
plt.title("Initial response from $x_1 = 1$, $x_2 = 0$")
```

```
Out[5]: Text(0.5, 1.0, 'Initial response from $x_1 = 1$, $x_2 = 0$')
```
There are also lots of options available in `initial_response` and `.plot()` for tuning the plots that you get.

```plaintext
In [6]:
Do some Python magic to get different colors
from itertools import cycle
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = cycle(prop_cycle.by_key()]['color'])

for X0 in [[1, 0, 0, 0], [0, 2, 0, 0], [1, 2, 0, 0], [0, 0, 1, 0], [0, 0, 2,
 response = ct.initial_response(sys, T=20, X0=X0)
response.sysname = f"{X0}"
response.plot(color=next(colors))
```
Step response

Similar to \texttt{initial_response}, you can also generate a step response for a linear system using the \texttt{step_response} function, which returns a time response object:

In [7]: \texttt{ct.step_response(sys).plot()}

Out[7]: \texttt{array([[\texttt{list([<matplotlib.lines.Line2D object at 0x11bd60a70>])}},
                  \texttt{[\texttt{list([<matplotlib.lines.Line2D object at 0x11bdac7a0>])}]},
                  \texttt{dtype=object}]}
We can analyze the properties of the step response using the `stepinfo` command:

```python
In [8]:
step_info = ct.step_info(sys)
print("Input 0, output 0 rise time = ",
 step_info[0][0]["RiseTime"], " seconds")
step_info
```

```
Input 0, output 0 rise time = 0.6153902252990775 seconds

Out[8]: [[{'RiseTime': 0.6153902252990775,
 'SettlingTime': 89.02645259326653,
 'SettlingMin': -0.13272845655369417,
 'SettlingMax': 0.9005994876222034,
 'Overshoot': 170.17984628666102,
 'Undershoot': 39.81853696610825,
 'Peak': 0.9005994876222034,
 'PeakTime': 2.3589958636464634,
 'SteadyStateValue': 0.33333333333333337},
 {'RiseTime': 0.6153902252990775,
 'SettlingTime': 73.6416969607896,
 'SettlingMin': 0.2276019820782241,
 'SettlingMax': 1.13389337710215,
 'Overshoot': 70.08400656532254,
 'Undershoot': 0,
 'Peak': 1.13389337710215,
 'PeakTime': 6.564162403190159,
 'SteadyStateValue': 0.6666666666666665}]]
```
Note that by default the inputs are not included in the step response (since they are a bit boring), but you can change that:

```python
In [9]:
stepresp = ct.step_response(sys)
stepresp.plot(plot_inputs=True)
```

```python
Out[9]:
array([[list([<matplotlib.lines.Line2D object at 0x11bead6a0>])],
 [list([<matplotlib.lines.Line2D object at 0x11bead7f0>])],
 [list([<matplotlib.lines.Line2D object at 0x11beadac0>])]],
dtype=object)
```

**Step response for coupled spring mass**

```python
In [10]: stepresp.plot(plot_inputs='overlay')
```

```python
Out[10]:
array([[list([<matplotlib.lines.Line2D object at 0x11bef6cf0>,
 <matplotlib.lines.Line2D object at 0x11bf952b0>]),
 [list([<matplotlib.lines.Line2D object at 0x11bf950a0>])]],
dtype=object)
```
Look at the "shape" of the step response

```python
print(f"{stepresp.time.shape}")
print(f"{stepresp.inputs.shape}")
print(f"{stepresp.states.shape}")
print(f"{stepresp.outputs.shape}"))
```

```
stepresp.time.shape=(1348,)
stepresp.inputs.shape=(1, 1, 1348)
stepresp.states.shape=(4, 1, 1348)
stepresp.outputs.shape=(2, 1, 1348)
```

**Forced response**

To compute the response to an input, using the convolution equation, we can use the `forced_response` function:

```python
T = np.linspace(0, 50, 500)
U1 = np.cos(T)
U2 = np.sin(3 * T)

resp1 = ct.forced_response(sys, T, U1)
resp2 = ct.forced_response(sys, T, U2)
resp3 = ct.forced_response(sys, T, U1 + U2)
```

```
Plot the individual responses
resp1.sysname = 'U1'; resp1.plot(color='b')
```
```python
resp2.sysname = 'U2'; resp2.plot(color='g')
resp3.sysname = 'U1 + U2'; resp3.plot(color='r')
```

```
Out[12]:
array([[[<matplotlib.lines.Line2D object at 0x11c0c8ec0>]],
 [[<matplotlib.lines.Line2D object at 0x11c0c92b0>]],
 [[<matplotlib.lines.Line2D object at 0x11c0c9130>]]],
 dtype=object)
```

**Forced response for coupled spring mass**

```
In [13]:
 # Show that the system response is linear
 out = resp3.plot()
 axs = ct.get_plot_axes(out)
 axs[0, 0].plot(resp1.time, resp1.outputs[0] + resp2.outputs[0], 'k--')
 axs[1, 0].plot(resp1.time, resp1.outputs[1] + resp2.outputs[1], 'k--')
 axs[2, 0].plot(resp1.time, resp1.inputs[0] + resp2.inputs[0], 'k--')
```

```
Out[13]: [<matplotlib.lines.Line2D at 0x11c1f4290>]
```
Show that the forced response from non-zero initial condition is not linear.

\[ X_0 = [1, 0, 0, 0] \]

\[ \text{resp1} = \text{ct}.\text{forced_response}(\text{sys}, T, U1, X0=X0) \]

\[ \text{resp2} = \text{ct}.\text{forced_response}(\text{sys}, T, U2, X0=X0) \]

\[ \text{resp3} = \text{ct}.\text{forced_response}(\text{sys}, T, U1 + U2, X0=X0) \]

\[ \text{out} = \text{resp3}.\text{plot()} \]

\[ \text{axs} = \text{ct}.\text{get_plot_axes}(\text{out}) \]

\[ \text{axs}[0, 0].\text{plot}(\text{resp1.time}, \text{resp1.outputs}[0] + \text{resp2.outputs}[0], 'k--') \]

\[ \text{axs}[1, 0].\text{plot}(\text{resp1.time}, \text{resp1.outputs}[1] + \text{resp2.outputs}[1], 'k--') \]

\[ \text{axs}[2, 0].\text{plot}(\text{resp1.time}, \text{resp1.inputs}[0] + \text{resp2.inputs}[0], 'k--') \]
# Manual computation of the frequency response

```
In [15]:
resp = ct.input_output_response(sys, T, np.sin(1.35 * T))

In [15]:
?ct.time_response_plot
resp.plot(plot_inputs='overlay', legend_loc='lower left')
```

```
Out[15]:
array([[[<matplotlib.lines.Line2D object at 0x11c3d4e30>, <matplotlib.
 lines.Line2D object at 0x11c3d5340>]],
 [[<matplotlib.lines.Line2D object at 0x11c3d5070>]]],
 dtype=object)
```
The magnitude and phase of the frequency response is controlled by the transfer function,

\[ G(s) = C(sI - A)^{-1}B + D \]

which can be computed using the `ss2tf` function:

```python
Create SISO transfer functions, since we don't have slycot
G1 = ct.ss2tf(sys[0, 0], name='u to q1')
G2 = ct.ss2tf(sys[1, 0], name='u to q2')
print(G1)
print(G2)
```
<TransferFunction>: u to q1
Inputs (1): ['u[0]']
Outputs (1): ['q1']

\[ s^4 + 0.2 s^3 + 8.01 s^2 + 0.8 s + 12 \]

<TransferFunction>: u to q2
Inputs (1): ['u[0]']
Outputs (1): ['q2']

\[ 2 s^2 + 0.2 s + 8 \]

Gain and phase for the simulation above

```python
from math import pi
val = G1(1.35j)
print(f"G1(1.35j)={val}")
print(f"Gain: {np.absolute(val)}")
print(f"Phase: {np.angle(val)} deg")
```

G1(1.35j)=(3.330564744031984-2.706863274436471j)
Gain: 4.291431568743418
Phase: -0.682532008139448  (-39.106214488414615 deg)

Gain and phase at s = 0 (= steady state step response)

```python
print(f"G1(0)={val}")
print("Final value of step response:", stepresp.outputs[0, 0, -1])
```

G1(0)=(0.3333333333333333+0j)
Final value of step response: 0.33297541813724874

```
In [19]:
ct.bode_plot(sys)
```

Out[19]:

```
array([[[<matplotlib.lines.Line2D object at 0x11c203b90>]],
 [<matplotlib.lines.Line2D object at 0x11bfc2000>]],
 [<matplotlib.lines.Line2D object at 0x11bfc20c0>]],
 [<matplotlib.lines.Line2D object at 0x11c139610>]],
 dtype=object)
```
Bode plot for coupled spring mass

```
In [20]: ct.bode_plot(sys, overlay_outputs=True)
Out[20]: array([[list([<matplotlib.lines.Line2D object at 0x11c83e600>, <matplotlib.
 lines.Line2D object at 0x11c902780>])],
 [list([<matplotlib.lines.Line2D object at 0x11c902390>, <matplotlib.
 lines.Line2D object at 0x11c902a20>])]],
 dtype=object)
```
Note the "dip" in the frequency response for \( y[1] \) at frequency 2 rad/sec, which corresponds to a "zero" of the transfer function.

This dip becomes even more pronounced in the case of low damping coefficient \( c \):

\[
\text{In [21]:} \quad \text{ct.bode_plot}
\begin{align*}
&\quad \text{coupled.linearize}([0, 0, 0, 0], [0], \text{params}={{'c': 0.01}}), \\
&\quad \text{overlay_outputs=\text{True}})
\end{align*}
\]

\[
\text{Out[21]:} \quad \text{array}([[[\text{<matplotlib.lines.Line2D object at 0x11cbd3650>, <matplotlib.lines.Line2D object at 0x11cbd3d10>}}], \\
&[[\text{<matplotlib.lines.Line2D object at 0x11cbd3980>, <matplotlib.lines.Line2D object at 0x11cbd3fe0>}}]])], \\
&\quad \text{dtype=object})
\]

Additional resources

- Code for FBS2e figures: Python code used to generate figures in FBS2e
- Python-control documentation for plotting time responses
- Python-control documentation for plotting frequency responses
- Python-control examples: lots of Python and Jupyter examples of control system analysis and design