Differential Forms and Stokes’ Theorem

Jerrold E. Marsden

Control and Dynamical Systems, Caltech
http://www.cds.caltech.edu/~marsden/
Main idea: Generalize the basic operations of vector calculus, \texttt{div}, \texttt{grad}, \texttt{curl}, and the integral theorems of \textit{Green, Gauss, and Stokes} to manifolds of arbitrary dimension.
Main idea: Generalize the basic operations of vector calculus, div, grad, curl, and the integral theorems of Green, Gauss, and Stokes to manifolds of arbitrary dimension.

1-forms. The term “1-form” is used in two ways—they are either members of a particular cotangent space $T^*_m M$ or else, analogous to a vector field, an assignment of a covector in $T^*_m M$ to each $m \in M$.
Main idea: Generalize the basic operations of vector calculus, \texttt{div}, \texttt{grad}, \texttt{curl}, and the integral theorems of \textit{Green, Gauss, and Stokes} to manifolds of arbitrary dimension.

1-forms. The term “1-form” is used in two ways—they are either members of a particular cotangent space $T^*_m M$ or else, analogous to a vector field, an assignment of a covector in $T^*_m M$ to each $m \in M$.

Basic example: differential of a real-valued function.
Main idea: Generalize the basic operations of vector calculus, \textit{div, grad, curl}, and the integral theorems of \textit{Green, Gauss, and Stokes} to manifolds of arbitrary dimension.

1-forms. The term “1-form” is used in two ways—they are either members of a particular cotangent space \(T^*_mM \) or else, analogous to a vector field, an assignment of a covector in \(T^*_mM \) to each \(m \in M \).

Basic example: differential of a real-valued function.

2-form \(\Omega \): a map \(\Omega(m) : T_mM \times T_mM \rightarrow \mathbb{R} \) that assigns to each point \(m \in M \) a skew-symmetric bilinear form on the tangent space \(T_mM \) to \(M \) at \(m \).
A \textbf{k-form} α (or \textit{differential form of degree k}) is a map

$$\alpha(m) : T_mM \times \cdots \times T_mM(k \text{ factors}) \to \mathbb{R},$$

which, for each $m \in M$, is a skew-symmetric k-multi-linear map on the tangent space T_mM to M at m.
A k-form α (or differential form of degree k) is a map

$$\alpha(m) : T_mM \times \cdots \times T_mM (k \text{ factors}) \rightarrow \mathbb{R},$$

which, for each $m \in M$, is a skew-symmetric k-multi-linear map on the tangent space T_mM to M at m.

Without the skew-symmetry assumption, α would be a $(0,k)$-tensor.
A \textit{k-form} \(\alpha \) (or \textit{differential form of degree} \(k \)) is a map

\[\alpha(m) : T_mM \times \cdots \times T_mM (k \text{ factors}) \rightarrow \mathbb{R}, \]

which, for each \(m \in M \), is a skew-symmetric \(k \)-multi-linear map on the tangent space \(T_mM \) to \(M \) at \(m \).

Without the skew-symmetry assumption, \(\alpha \) would be a \((0, k)\)-\textit{tensor}.

A map \(\alpha : V \times \cdots \times V \) (\(V \) is a vector space and there are \(k \) factors) \(\rightarrow \mathbb{R} \) is \textit{multilinear} when it is linear in each of its factors.
A \textit{k-form} \(\alpha\) (or \textit{differential form of degree} \(k\)) is a map

\[\alpha(m) : T_mM \times \cdots \times T_mM (k \text{ factors}) \rightarrow \mathbb{R},\]

which, for each \(m \in M\), is a skew-symmetric \(k\)-multi-linear map on the tangent space \(T_mM\) to \(M\) at \(m\).

Without the skew-symmetry assumption, \(\alpha\) would be a \((0, k)\)-\textit{tensor}.

A map \(\alpha : V \times \cdots \times V\) \((V\) is a vector space and there are \(k\) factors) \(\rightarrow \mathbb{R}\) is \textit{multilinear} when it is linear in each of its factors.

It is \textit{skew} (or \textit{alternating}) when it changes sign whenever two of its arguments are interchanged.
Why is skew-symmetry important? Some examples where it is implicitly used
Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.
Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.
- Cross products and the curl
Why is skew-symmetry important? Some examples where it is implicitly used

- Determinants and integration: Jacobian determinants in the change of variables theorem.
- Cross products and the curl
- Orientation or “handedness”
Let x^1, \ldots, x^n denote coordinates on M, let

$$\{e_1, \ldots, e_n\} = \{\partial/\partial x^1, \ldots, \partial/\partial x^n\}$$

be the corresponding basis for $T_m M$.
Let x^1, \ldots, x^n denote coordinates on M, let
\[\{ e_1, \ldots, e_n \} = \{ \partial / \partial x^1, \ldots, \partial / \partial x^n \} \]
be the corresponding basis for $T_m M$.

Let $\{ e^1, \ldots, e^n \} = \{ dx^1, \ldots, dx^n \}$ be the dual basis for $T^*_m M$.
Let \(x^1, \ldots, x^n \) denote coordinates on \(M \), let
\[
\{e_1, \ldots, e_n\} = \{\partial/\partial x^1, \ldots, \partial/\partial x^n\}
\]
be the corresponding basis for \(T_m M \).

Let \(\{e^1, \ldots, e^n\} = \{dx^1, \ldots, dx^n\} \) be the dual basis for \(T^*_m M \).

At each \(m \in M \), we can write a 2-form as
\[
\Omega_m(v, w) = \Omega_{ij}(m)v^i w^j,
\]
where
\[
\Omega_{ij}(m) = \Omega_m \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right),
\]
Let x^1, \ldots, x^n denote coordinates on M, let
\[\{e_1, \ldots, e_n\} = \{\partial/\partial x^1, \ldots, \partial/\partial x^n\} \]
be the corresponding basis for $T_m M$.

Let $\{e^1, \ldots, e^n\} = \{dx^1, \ldots, dx^n\}$ be the dual basis for $T^*_m M$.

At each $m \in M$, we can write a 2-form as
\[\Omega_m(v, w) = \Omega_{ij}(m) v^i w^j, \]
where
\[\Omega_{ij}(m) = \Omega_m \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right), \]
Similarly for k-forms.
If α is a $(0, k)$-tensor on a manifold M and β is a $(0, l)$-tensor, their tensor product (sometimes called the outer product), $\alpha \otimes \beta$ is the $(0, k + l)$-tensor on M defined by

\[
(\alpha \otimes \beta)_m(v_1, \ldots, v_{k+l}) = \alpha_m(v_1, \ldots, v_k)\beta_m(v_{k+1}, \ldots, v_{k+l})
\]

at each point $m \in M$.
If α is a $(0, k)$-tensor on a manifold M and β is a $(0, l)$-tensor, their tensor product (sometimes called the outer product), $\alpha \otimes \beta$ is the $(0, k + l)$-tensor on M defined by

$$\left(\alpha \otimes \beta\right)_m(v_1, \ldots, v_{k+l}) = \alpha_m(v_1, \ldots, v_k)\beta_m(v_{k+1}, \ldots, v_{k+l})$$

at each point $m \in M$.

Outer product of two vectors is a matrix.
If t is a $(0, p)$-tensor, define the \textit{alternation operator} A acting on t by

$$A(t)(v_1, \ldots, v_p) = \frac{1}{p!} \sum_{\pi \in S_p} \text{sgn}(\pi) t(v_{\pi(1)}, \ldots, v_{\pi(p)})$$

where \text{sgn}(\pi) is the \textit{sign} of the permutation π,

$$\text{sgn}(\pi) = \begin{cases} +1 & \text{if } \pi \text{ is even} , \\ -1 & \text{if } \pi \text{ is odd} \end{cases}$$

and S_p is the group of all permutations of the set \{1, 2, \ldots, p\}.
If \(t \) is a \((0,p)\)-tensor, define the \textit{alternation operator} \(A \) acting on \(t \) by

\[
A(t)(v_1, \ldots, v_p) = \frac{1}{p!} \sum_{\pi \in S_p} \text{sgn}(\pi) t(v_{\pi(1)}, \ldots, v_{\pi(p)}),
\]

where \(\text{sgn}(\pi) \) is the \textit{sign} of the permutation \(\pi \),

\[
\text{sgn}(\pi) = \begin{cases}
+1 & \text{if } \pi \text{ is even }, \\
-1 & \text{if } \pi \text{ is odd },
\end{cases}
\]

and \(S_p \) is the group of all permutations of the set \(\{1, 2, \ldots, p\} \).

The operator \(A \) therefore \textit{skew-symmetrizes} \(p \)-multilinear maps.
If \(\alpha \) is a \(k \)-form and \(\beta \) is an \(l \)-form on \(M \), their *wedge product* \(\alpha \wedge \beta \) is the \((k + l) \)-form on \(M \) defined by

\[
\alpha \wedge \beta = \frac{(k + l)!}{k! l!} A(\alpha \otimes \beta).
\]
If α is a k-form and β is an l-form on M, their wedge product $\alpha \wedge \beta$ is the $(k + l)$-form on M defined by

$$\alpha \wedge \beta = \frac{(k + l)!}{k! \ l!} \mathcal{A}(\alpha \otimes \beta).$$

One has to be careful here as some authors use different conventions.
Tensor and Wedge Products

- If α is a k-form and β is an l-form on M, their **wedge product** $\alpha \wedge \beta$ is the $(k + l)$-form on M defined by
 \[
 \alpha \wedge \beta = \frac{(k + l)!}{k! \cdot l!} \text{A}(\alpha \otimes \beta).
 \]

- One has to be careful here as some authors use different conventions.

- **Examples:** if α and β are one-forms, then
 \[
 (\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1),
 \]
If α is a k-form and β is an l-form on M, their \textit{wedge product} $\alpha \wedge \beta$ is the $(k + l)$-form on M defined by

$$\alpha \wedge \beta = \frac{(k + l)!}{k! l!} A(\alpha \otimes \beta).$$

One has to be careful here as some authors use different conventions.

\textbf{Examples:} if α and β are one-forms, then

$$(\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1),$$

If α is a 2-form and β is a 1-form,

$$(\alpha \wedge \beta)(v_1, v_2, v_3) = \alpha(v_1, v_2)\beta(v_3) - \alpha(v_1, v_3)\beta(v_2) + \alpha(v_2, v_3)\beta(v_1).$$
Wedge product properties:

(i) **Associative:** $\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma$.

(ii) **Bilinear:**

$$ (a\alpha_1 + b\alpha_2) \wedge \beta = a(\alpha_1 \wedge \beta) + b(\alpha_2 \wedge \beta), $$
$$ \alpha \wedge (c\beta_1 + d\beta_2) = c(\alpha \wedge \beta_1) + d(\alpha \wedge \beta_2). $$

(iii) **Anticommutative:** $\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha$, where α is a k-form and β is an l-form.
Wedge product properties:

(i) **Associative:** \(\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma. \)

(ii) **Bilinear:**

\[
(a\alpha_1 + b\alpha_2) \wedge \beta = a(\alpha_1 \wedge \beta) + b(\alpha_2 \wedge \beta), \\
\alpha \wedge (c\beta_1 + d\beta_2) = c(\alpha \wedge \beta_1) + d(\alpha \wedge \beta_2).
\]

(iii) **Anticommutative:** \(\alpha \wedge \beta = (-1)^{kl}\beta \wedge \alpha, \) where \(\alpha \) is a \(k \)-form and \(\beta \) is an \(l \)-form.

Coordinate Representation: Use dual basis \(dx^i; \)

\(\alpha = \alpha_{i_1...i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k}, \)

where the sum is over all \(i_j \) satisfying \(i_1 < \cdots < i_k. \)
$\varphi : M \to N$, a smooth map and α a k-form on N.

Pull-Back and Push-Forward

- \(\varphi : M \rightarrow N \), a smooth map and \(\alpha \) a \(k \)-form on \(N \).
- **Pull-back:** \(\varphi^* \alpha \) of \(\alpha \) by \(\varphi \): the \(k \)-form on \(M \)

\[
(\varphi^* \alpha)_m(v_1, \ldots, v_k) = \alpha_{\varphi(m)}(T_m \varphi \cdot v_1, \ldots, T_m \varphi \cdot v_k).
\]
Pull-Back and Push-Forward

□ $\varphi : M \to N$, a smooth map and α a k-form on N.

□ **Pull-back:** $\varphi^*\alpha$ of α by φ: the k-form on M

$$
(\varphi^*\alpha)_m(v_1, \ldots, v_k) = \alpha_{\varphi(m)}(T_m\varphi \cdot v_1, \ldots, T_m\varphi \cdot v_k).
$$

□ **Push-forward** (if φ is a diffeomorphism):

$$
\varphi_* = (\varphi^{-1})^*.
$$
Pull-Back and Push-Forward

- $\varphi : M \to N$, a smooth map and α a k-form on N.

- **Pull-back**: $\varphi^*\alpha$ of α by φ: the k-form on M

 $$(\varphi^*\alpha)_m(v_1, \ldots, v_k) = \alpha_{\varphi(m)}(T_m\varphi \cdot v_1, \ldots, T_m\varphi \cdot v_k).$$

- **Push-forward** (if φ is a diffeomorphism):

 $\varphi_* = (\varphi^{-1})^*.$

- The pull-back of a wedge product is the wedge product of the pull-backs:

 $$\varphi^*(\alpha \wedge \beta) = \varphi^*\alpha \wedge \varphi^*\beta.$$
Let α be a k-form on a manifold M and X a vector field.
Let α be a k-form on a manifold M and X a vector field.

The **interior product** $i_X \alpha$ (sometimes called the **contraction** of X and α and written, using the “hook” notation, as $X \hook \alpha$) is defined by

$$(i_X \alpha)_m(v_2, \ldots, v_k) = \alpha_m(X(m), v_2, \ldots, v_k).$$
Let α be a k-form on a manifold M and X a vector field.

The **interior product** $i_X\alpha$ (sometimes called the *contraction* of X and α and written, using the “hook” notation, as $X \hook\alpha$) is defined by

$$(i_X\alpha)_m(v_2, \ldots, v_k) = \alpha_m(X(m), v_2, \ldots, v_k).$$

Product Rule-Like Property. Let α be a k-form and β a 1-form on a manifold M. Then

$$i_X(\alpha \wedge \beta) = (i_X\alpha) \wedge \beta + (-1)^k \alpha \wedge (i_X\beta).$$

or, in the hook notation,

$$X \hook(\alpha \wedge \beta) = (X \hook \alpha) \wedge \beta + (-1)^k \alpha \wedge (X \hook \beta).$$
The exterior derivative $d\alpha$ of a k-form α is the $(k + 1)$-form determined by the following properties:
The exterior derivative $d\alpha$ of a k-form α is the $(k + 1)$-form determined by the following properties:

- If $\alpha = f$ is a 0-form, then df is the differential of f.

The **exterior derivative** $d\alpha$ of a k-form α is the $(k + 1)$-form determined by the following properties:

- If $\alpha = f$ is a 0-form, then df is the differential of f.
- $d\alpha$ is **linear** in α—for all real numbers c_1 and c_2,
 \[d(c_1\alpha_1 + c_2\alpha_2) = c_1d\alpha_1 + c_2d\alpha_2. \]
The **exterior derivative** $d\alpha$ of a k-form α is the $(k + 1)$-form determined by the following properties:

- If $\alpha = f$ is a 0-form, then df is the differential of f.
- $d\alpha$ is **linear** in α—for all real numbers c_1 and c_2,
 \[d(c_1\alpha_1 + c_2\alpha_2) = c_1d\alpha_1 + c_2d\alpha_2. \]
- $d\alpha$ satisfies the **product rule**—
 \[d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta, \]
 where α is a k-form and β is an l-form.
The **exterior derivative** $d\alpha$ of a k-form α is the $(k + 1)$-form determined by the following properties:

- If $\alpha = f$ is a 0-form, then df is the differential of f.
- $d\alpha$ is **linear** in α—for all real numbers c_1 and c_2,
 \[
d(c_1\alpha_1 + c_2\alpha_2) = c_1d\alpha_1 + c_2d\alpha_2.
 \]
- $d\alpha$ satisfies the **product rule**—
 \[
d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k\alpha \wedge d\beta,
 \]
 where α is a k-form and β is an l-form.
- $d^2 = 0$, that is, $d(d\alpha) = 0$ for any k-form α.
The **exterior derivative** $d\alpha$ of a k-form α is the $(k+1)$-form determined by the following properties:

- If $\alpha = f$ is a 0-form, then df is the differential of f.
- $d\alpha$ is **linear** in α—for all real numbers c_1 and c_2,
 \[
d(c_1\alpha_1 + c_2\alpha_2) = c_1d\alpha_1 + c_2d\alpha_2.
 \]
- $d\alpha$ satisfies the **product rule**—
 \[
d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta,
 \]
 where α is a k-form and β is an l-form.
- $d^2 = 0$, that is, $d(d\alpha) = 0$ for any k-form α.
- d is a **local operator**, that is, $d\alpha(m)$ depends only on α restricted to any open neighborhood of m; that is, if U is open in M, then
 \[
d(\alpha|U) = (d\alpha)|U.
 \]
If \(\alpha \) is a \(k \)-form given in coordinates by

\[
\alpha = \alpha_{i_1 \ldots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} \quad (\text{sum on } i_1 < \cdots < i_k),
\]

then the coordinate expression for the exterior derivative is

\[
d\alpha = \frac{\partial \alpha_{i_1 \ldots i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k}.
\]

with a sum over \(j \) and \(i_1 < \cdots < i_k \).
If α is a k-form given in coordinates by

$$\alpha = \alpha_{i_1 \ldots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} \quad \text{(sum on $i_1 < \cdots < i_k$)},$$

then the coordinate expression for the exterior derivative is

$$d\alpha = \frac{\partial \alpha_{i_1 \ldots i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k}.$$

with a sum over j and $i_1 < \cdots < i_k$

This formula is easy to remember from the properties.
Exterior Derivative

Properties.

- Exterior differentiation commutes with pull-back, that is,
 \[d(\varphi^*\alpha) = \varphi^*(d\alpha), \]
 where \(\alpha \) is a \(k \)-form on a manifold \(N \) and \(\varphi : M \to N \).
Properties.

- Exterior differentiation commutes with pull-back, that is,
 \[d(\varphi^*\alpha) = \varphi^*(d\alpha), \]
 where \(\alpha \) is a \(k \)-form on a manifold \(N \) and \(\varphi : M \rightarrow N \).
- A \(k \)-form \(\alpha \) is called **closed** if \(d\alpha = 0 \) and is **exact** if there is a \((k-1)\)-form \(\beta \) such that \(\alpha = d\beta \).
Properties.

- Exterior differentiation commutes with pull-back, that is,
 \[d(\varphi^*\alpha) = \varphi^*(d\alpha), \]
 where \(\alpha \) is a \(k \)-form on a manifold \(N \) and \(\varphi : M \to N \).

- A \(k \)-form \(\alpha \) is called \textit{closed} if \(d\alpha = 0 \) and is \textit{exact} if there is a \((k - 1)\)-form \(\beta \) such that \(\alpha = d\beta \).

- \(d^2 = 0 \Rightarrow \) an exact form is closed (but the converse need not hold—we recall the standard vector calculus example shortly).
Properties.

- Exterior differentiation commutes with pull-back, that is,
 \[d(\varphi^*\alpha) = \varphi^*(d\alpha), \]
 where \(\alpha \) is a \(k \)-form on a manifold \(N \) and \(\varphi : M \to N \).

- A \(k \)-form \(\alpha \) is called closed if \(d\alpha = 0 \) and is exact if there is a \((k - 1) \)-form \(\beta \) such that \(\alpha = d\beta \).

- \(d^2 = 0 \Rightarrow \) an exact form is closed (but the converse need not hold—we recall the standard vector calculus example shortly)

- **Poincaré Lemma** A closed form is locally exact; that is, if \(d\alpha = 0 \), there is a neighborhood about each point on which \(\alpha = d\beta \).
□ Sharp and Flat (Using standard coordinates in \mathbb{R}^3)

(a) $v^\flat = v^1 dx + v^2 dy + v^3 dz$, the one-form corresponding to the vector $v = v^1 e_1 + v^2 e_2 + v^3 e_3$.

(b) $\alpha^\sharp = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$, the vector corresponding to the one-form $\alpha = \alpha_1 dx + \alpha_2 dy + \alpha_3 dz$.

Sharp and Flat *(Using standard coordinates in \(\mathbb{R}^3 \))*

(a) \(v^♭ = v^1 \, dx + v^2 \, dy + v^3 \, dz \), the one-form corresponding to the vector \(v = v^1 \mathbf{e}_1 + v^2 \mathbf{e}_2 + v^3 \mathbf{e}_3 \).

(b) \(\alpha^♯ = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \), the vector corresponding to the one-form \(\alpha = \alpha_1 \, dx + \alpha_2 \, dy + \alpha_3 \, dz \).

Hodge Star Operator

(a) \(*1 = dx \wedge dy \wedge dz \).

(b) \(*dx = dy \wedge dz \), \(*dy = -dx \wedge dz \), \(*dz = dx \wedge dy \),

\(*(dy \wedge dz) = dx \), \(*(dx \wedge dz) = -dy \), \(*(dx \wedge dy) = dz \).

(c) \(*(dx \wedge dy \wedge dz) = 1 \).
Sharp and Flat (Using standard coordinates in \mathbb{R}^3)

(a) $v^\flat = v^1 \, dx + v^2 \, dy + v^3 \, dz$, the one-form corresponding to the vector $v = v^1 e_1 + v^2 e_2 + v^3 e_3$.

(b) $\alpha^\# = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$, the vector corresponding to the one-form $\alpha = \alpha_1 \, dx + \alpha_2 \, dy + \alpha_3 \, dz$.

Hodge Star Operator

(a) $*1 = dx \wedge dy \wedge dz$.

(b) $*dx = dy \wedge dz$, $*dy = -dx \wedge dz$, $*dz = dx \wedge dy$,

$$\star(dx \wedge dz) = dx, \quad \star(dx \wedge dy) = -dy, \quad \star(dx \wedge dy) = dz.$$
(c) $* (dx \wedge dy \wedge dz) = 1$.

Cross Product and Dot Product

(a) $v \times w = [\star(v^b \wedge w^b)]^\#$.

(b) $(v \cdot w) dx \wedge dy \wedge dz = v^b \wedge \star(w^b)$.
Gradient \n\[\nabla f = \text{grad } f = (df)^\#. \n\]
\[\nabla f = \text{grad } f = (\text{d} f)^\#. \]

\[\nabla \times F = \text{curl } F = [\ast (\text{d} F^b)]^\#. \]
\[\nabla f = \text{grad } f = (df)^\#. \]

\[\nabla \times F = \text{curl } F = [\ast (dF^b)]^\#. \]

\[\nabla \cdot F = \text{div } F = \ast d(\ast F^b). \]
Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t. The \textit{Lie derivative} of α along X is

$$\mathcal{L}_X \alpha = \lim_{t \to 0} \frac{1}{t} [(\varphi_t^* \alpha) - \alpha] = \frac{d}{dt} \varphi_t^* \alpha \bigg|_{t=0}.$$
Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t. The *Lie derivative* of α along X is

$$\mathcal{L}_X \alpha = \lim_{t \to 0} \frac{1}{t}[(\varphi_t^* \alpha) - \alpha] = \frac{d}{dt}\varphi_t^* \alpha \bigg|_{t=0}.$$

Extend to non-zero values of t:

$$\frac{d}{dt}\varphi_t^* \alpha = \varphi_t^* \mathcal{L}_X \alpha.$$
Dynamic definition: Let α be a k-form and X be a vector field with flow φ_t. The *Lie derivative* of α along X is

$$\mathcal{L}_X \alpha = \lim_{t \to 0} \frac{1}{t} \left[(\varphi_t^* \alpha) - \alpha \right] = \frac{d}{dt} \varphi_t^* \alpha \bigg|_{t=0}.$$

Extend to non-zero values of t:

$$\frac{d}{dt} \varphi_t^* \alpha = \varphi_t^* \mathcal{L}_X \alpha.$$

Time-dependent vector fields

$$\frac{d}{dt} \varphi_{t,s}^* \alpha = \varphi_{t,s}^* \mathcal{L}_X \alpha.$$
Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$\mathcal{L}_X f = X[f] := df \cdot X.$$
Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$\mathcal{L}_X f = X[f] := df \cdot X.$$ \hspace{1cm} (1)

In coordinates

$$\mathcal{L}_X f = X^i \frac{\partial f}{\partial x^i}.$$
Real Valued Functions. The Lie derivative of f along X is the directional derivative

$$\mathcal{L}_X f = X[f] := df \cdot X.$$ \hspace{1cm} (1)

In coordinates

$$\mathcal{L}_X f = X^i \frac{\partial f}{\partial x^i}.$$

Useful Notation.

$$X = X^i \frac{\partial}{\partial x^i}.$$
The Lie derivative of f along X is the directional derivative

$$\mathcal{L}_X f = X[f] := df \cdot X.$$ \hspace{1cm} (1)

In coordinates

$$\mathcal{L}_X f = X^i \frac{\partial f}{\partial x^i}.$$

Useful Notation.

$$X = X^i \frac{\partial}{\partial x^i}.$$

Operator notation: $X[f] = df \cdot X$
Real Valued Functions. The *Lie derivative of f along X* is the *directional derivative*

\[\mathcal{L}_X f = X[f] := df \cdot X. \]

In coordinates

\[\mathcal{L}_X f = X^i \frac{\partial f}{\partial x^i}. \]

Useful Notation.

\[X = X^i \frac{\partial}{\partial x^i}. \]

Operator notation: $X[f] = df \cdot X$

The operator is a *derivation*; that is, the product rule holds.
□ **Pull-back.** If Y is a vector field on a manifold N and $\varphi : M \to N$ is a diffeomorphism, the pull-back φ^*Y is a vector field on M defined by

$$(\varphi^*Y)(m) = (T_m\varphi^{-1} \circ Y \circ \varphi)(m).$$
Pull-back. If \(Y \) is a vector field on a manifold \(N \) and \(\varphi : M \to N \) is a diffeomorphism, the pull-back \(\varphi^*Y \) is a vector field on \(M \) defined by

\[
(\varphi^*Y)(m) = (T_m \varphi^{-1} \circ Y \circ \varphi)(m).
\]

Push-forward. For a diffeomorphism \(\varphi \), the push-forward is defined, as for forms, by \(\varphi_* = (\varphi^{-1})^* \).
Pull-back. If Y is a vector field on a manifold N and $\varphi : M \to N$ is a diffeomorphism, the **pull-back** φ^*Y is a vector field on M defined by

$$(\varphi^*Y)(m) = (T_m\varphi^{-1} \circ Y \circ \varphi)(m).$$

Push-forward. For a diffeomorphism φ, the **push-forward** is defined, as for forms, by $\varphi_* = (\varphi^{-1})^*$. Flows of X and φ_*X related by conjugation.
Lie Derivative

\[c = \text{integral curve of } X \]

\[\varphi \circ F_t \circ \varphi^{-1} \]

\[\varphi \cdot \varphi \circ c \cdot \varphi^{-1} \text{ curve of } \varphi_\ast X \]
The Lie derivative on functions is a \textit{derivation}; conversely, derivations determine vector fields.
The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.

The commutator is a derivation

\[f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f], \]

which determines the unique vector field \([X, Y]\) the \textit{Jacobi–Lie bracket} of \(X\) and \(Y\).
The Lie derivative on functions is a \textit{derivation}; conversely, derivations determine vector fields.

The commutator is a derivation

\[f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f], \]

which determines the unique vector field \([X, Y]\) the \textit{Jacobi–Lie bracket} of \(X\) and \(Y\).

\[\mathcal{L}_X Y = [X, Y], \quad \text{\textit{Lie derivative}} \quad \text{of} \quad Y \quad \text{along} \quad X. \]
The Lie derivative on functions is a \textit{derivation}; conversely, derivations determine vector fields.

The commutator is a derivation

$$f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$$

which determines the unique vector field $[X, Y]$ the \textit{Jacobi–Lie bracket} of X and Y.

$\mathcal{L}_X Y = [X, Y]$, \textit{Lie derivative} of Y along X.

The analog of the Lie derivative formula holds.
The Lie derivative on functions is a derivation; conversely, derivations determine vector fields.

The commutator is a derivation

$$f \mapsto X[Y[f]] - Y[X[f]] = [X, Y][f],$$

which determines the unique vector field $[X, Y]$ the Jacobi–Lie bracket of X and Y.

$\mathcal{L}_X Y = [X, Y]$, Lie derivative of Y along X.

The analog of the Lie derivative formula holds.

Coordinates:

$$(\mathcal{L}_X Y)^j = X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} = (X \cdot \nabla)Y^j - (Y \cdot \nabla)X^j,$$
The formula for \([X, Y] = \mathcal{L}_XY\) can be remembered by writing

\[
\left[X^i \frac{\partial}{\partial x^i}, Y^j \frac{\partial}{\partial x^j} \right] = X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j} \frac{\partial}{\partial x^i}.
\]
Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation.
Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation.

Example. For a 1-form α,

$$\mathcal{L}_X \langle \alpha, Y \rangle = \langle \mathcal{L}_X \alpha, Y \rangle + \langle \alpha, \mathcal{L}_X Y \rangle,$$

where X, Y are vector fields and $\langle \alpha, Y \rangle = \alpha(Y)$.
Program: Extend the definition of the Lie derivative from functions and vector fields to differential forms, by requiring that the Lie derivative be a derivation.

Example. For a 1-form α,

$$\mathcal{L}_X \langle \alpha, Y \rangle = \langle \mathcal{L}_X \alpha, Y \rangle + \langle \alpha, \mathcal{L}_X Y \rangle,$$

where X, Y are vector fields and $\langle \alpha, Y \rangle = \alpha(Y)$.

More generally, determine $\mathcal{L}_X \alpha$ by

$$\mathcal{L}_X (\alpha(Y_1, \ldots, Y_k))$$

$$= (\mathcal{L}_X \alpha)(Y_1, \ldots, Y_k) + \sum_{i=1}^{k} \alpha(Y_1, \ldots, \mathcal{L}_X Y_i, \ldots, Y_k).$$
The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.
Equivalence

□ The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.

□ The Lie derivative formalism holds for all tensors, not just differential forms.
Equivalence

- The dynamic and algebraic definitions of the Lie derivative of a differential k-form are equivalent.
- The Lie derivative formalism holds for all tensors, not just differential forms.
- Very useful in all areas of mechanics: eg, the rate of strain tensor in elasticity is a Lie derivative and the vorticity advection equation in fluid dynamics are both Lie derivative equations.
Cartan’s Magic Formula. For X a vector field and α a k-form

$$\mathcal{L}_X \alpha = d\iota_X \alpha + \iota_X d\alpha,$$
Properties

- **Cartan’s Magic Formula.** For X a vector field and α a k-form

$$\mathcal{L}_X \alpha = d\mathbf{i}_X \alpha + \mathbf{i}_X d\alpha,$$

- In the “hook” notation,

$$\mathcal{L}_X \alpha = d(X \hook \alpha) + X \hook d\alpha.$$
Properties

Cartan’s Magic Formula. For X a vector field and α a k-form

$$\mathcal{L}_X\alpha = \text{di}_X\alpha + \text{i}_X\text{d}\alpha,$$

In the “hook” notation,

$$\mathcal{L}_X\alpha = \text{d}(X \hook \alpha) + X \hook \text{d}\alpha.$$

If $\varphi : M \to N$ is a diffeomorphism, then

$$\varphi^*\mathcal{L}_Y\beta = \mathcal{L}_{\varphi^*Y}\varphi^*\beta$$

for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^k(M)$.
Properties

□ **Cartan’s Magic Formula.** For X a vector field and α a k-form

\[\mathcal{L}_X \alpha = d\text{ind}_X \alpha + \text{ind}_X d\alpha, \]

□ In the “hook” notation,

\[\mathcal{L}_X \alpha = d(X \hook \alpha) + X \hook d\alpha. \]

□ If $\varphi : M \to N$ is a diffeomorphism, then

\[\varphi^* \mathcal{L}_Y \beta = \mathcal{L}_{\varphi^* Y} \varphi^* \beta \]

for $Y \in \mathfrak{X}(N)$ and $\beta \in \Omega^k(M)$.

□ Many other useful identities, such as

\[d\Theta(X, Y) = X[\Theta(Y)] - Y[\Theta(X)] - \Theta([X, Y]). \]
An n-manifold M is *orientable* if there is a nowhere-vanishing n-form μ on it; μ is a *volume form*.
An n-manifold M is *orientable* if there is a nowhere-vanishing n-form μ on it; μ is a *volume form*.

Two volume forms μ_1 and μ_2 on M define the same *orientation* if $\mu_2 = f \mu_1$, where $f > 0$.
An n-manifold M is **orientable** if there is a nowhere-vanishing n-form μ on it; μ is a **volume form**.

Two volume forms μ_1 and μ_2 on M define the same **orientation** if $\mu_2 = f \mu_1$, where $f > 0$.

Oriented Basis. A basis $\{v_1, \ldots, v_n\}$ of $T_m M$ is **positively oriented** relative to the volume form μ on M if $\mu(m)(v_1, \ldots, v_n) > 0$.

Volume Forms and Divergence

- An n-manifold M is **orientable** if there is a nowhere-vanishing n-form μ on it; μ is a **volume form**

- Two volume forms μ_1 and μ_2 on M define the same **orientation** if $\mu_2 = f \mu_1$, where $f > 0$.

- **Oriented Basis.** A basis $\{v_1, \ldots, v_n\}$ of T_mM is **positively oriented** relative to the volume form μ on M if $\mu(m)(v_1, \ldots, v_n) > 0$.

- **Divergence.** If μ is a volume form, there is a function, called the **divergence** of X relative to μ and denoted by $\text{div}_\mu(X)$ or simply $\text{div}(X)$, such that

$$\mathcal{L}_X \mu = \text{div}_\mu(X) \mu.$$
Dynamic approach to Lie derivatives $\Rightarrow \text{div}_\mu(X) = 0$ if and only if $F_t^*\mu = \mu$, where F_t is the flow of X (that is, F_t is \textit{volume preserving}.)}
Dynamic approach to Lie derivatives $\Rightarrow \text{div}_\mu(X) = 0$ if and only if $F_t^* \mu = \mu$, where F_t is the flow of X (that is, F_t is *volume preserving*.)

If $\varphi : M \to M$, there is a function, called the *Jacobian* of φ and denoted by $J_\mu(\varphi)$ or simply $J(\varphi)$, such that

$$\varphi^* \mu = J_\mu(\varphi) \mu.$$
Dynamic approach to Lie derivatives $\Rightarrow \text{div}_\mu(X) = 0$ if and only if $F_t^*\mu = \mu$, where F_t is the flow of X (that is, F_t is \textit{volume preserving}.)

If $\varphi : M \rightarrow M$, there is a function, called the \textbf{Jacobian} of φ and denoted by $J_\mu(\varphi)$ or simply $J(\varphi)$, such that

$$\varphi^*\mu = J_\mu(\varphi)\mu.$$

Consequence: φ is \textit{volume preserving} if and only if $J_\mu(\varphi) = 1$.
A vector subbundle (a regular distribution) $E \subset TM$ is involutive if for any two vector fields X, Y on M with values in E, the Jacobi–Lie bracket $[X, Y]$ is also a vector field with values in E.
Frobenius’ Theorem

- A vector subbundle (a regular distribution) $E \subset TM$ is **involutive** if for any two vector fields X, Y on M with values in E, the Jacobi–Lie bracket $[X, Y]$ is also a vector field with values in E.

- E is **integrable** if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.
Frobenius’ Theorem

- A vector subbundle (a regular distribution) $E \subset TM$ is **involutive** if for any two vector fields X, Y on M with values in E, the Jacobi–Lie bracket $[X, Y]$ is also a vector field with values in E.

- E is **integrable** if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.

- If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a **foliation**.
Frobenius’ Theorem

- A vector subbundle (a regular distribution) $E \subset TM$ is **involutive** if for any two vector fields X, Y on M with values in E, the Jacobi–Lie bracket $[X, Y]$ is also a vector field with values in E.

- E is **integrable** if for each $m \in M$ there is a local submanifold of M containing m such that its tangent bundle equals E restricted to this submanifold.

- If E is integrable, the local integral manifolds can be extended to a maximal integral manifold. The collection of these forms a **foliation**.

- **Frobenius theorem**: E is involutive if and only if it is integrable.
Stokes’ Theorem

Idea: Integral of an n-form μ on an oriented n-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) \, dx^1 \cdots dx^n$, where

$$
\mu = f(x^1, \ldots, x^n) \, dx^1 \wedge \cdots \wedge dx^n
$$

(don’t count overlaps twice).
Stokes’ Theorem

Idea: Integral of an n-form μ on an oriented n-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) \, dx^1 \cdots dx^n$, where

$$\mu = f(x^1, \ldots, x^n) \, dx^1 \wedge \cdots \wedge dx^n$$

(don’t count overlaps twice).

The change of variables formula guarantees that the result, denoted by $\int_M \mu$, is well-defined.
Stokes’ Theorem

- **Idea:** Integral of an n-form μ on an oriented n-manifold M: pick a covering by coordinate charts and sum up the ordinary integrals of $f(x^1, \ldots, x^n) \, dx^1 \cdots dx^n$, where

 $$\mu = f(x^1, \ldots, x^n) \, dx^1 \wedge \cdots \wedge dx^n$$

 (don’t count overlaps twice).

- The change of variables formula guarantees that the result, denoted by $\int_M \mu$, is well-defined.

- **Oriented manifold with boundary:** the boundary, ∂M, inherits a compatible orientation: generalizes the relation between the orientation of a surface and its boundary in the classical Stokes’ theorem in \mathbb{R}^3.

Stokes’ Theorem
Stokes’ Theorem

Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M. Let α be a smooth $(k - 1)$-form on M. Then

$$\int_M d\alpha = \int_{\partial M} \alpha.$$
Stokes’ Theorem

Stokes’ Theorem Suppose that M is a compact, oriented k-dimensional manifold with boundary ∂M. Let α be a smooth $(k-1)$-form on M. Then

$$\int_M d\alpha = \int_{\partial M} \alpha.$$

Special cases: The classical vector calculus theorems of Green, Gauss and Stokes.
Stokes’ Theorem

(a) **Fundamental Theorem of Calculus.**
\[\int_a^b f'(x) \, dx = f(b) - f(a). \]

(b) **Green’s Theorem.** For a region \(\Omega \subset \mathbb{R}^2 \),
\[\iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy = \oint_{\partial \Omega} P \, dx + Q \, dy. \]

(c) **Divergence Theorem.** For a region \(\Omega \subset \mathbb{R}^3 \),
\[\iiint_{\Omega} \text{div} \, \mathbf{F} \, dV = \iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} \, dA. \]
(d) Classical Stokes’ Theorem. For a surface $S \subset \mathbb{R}^3$, \[
\int \int_S \left\{ \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz \\
+ \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy \right\} \\
= \int \int_S \mathbf{n} \cdot \text{curl} \mathbf{F} \, dA = \int_{\partial S} P \, dx + Q \, dy + R \, dz,
\]
where $\mathbf{F} = (P, Q, R)$.
Stokes’ Theorem

- **Poincaré lemma:** generalizes vector calculus theorems: if $\text{curl } \mathbf{F} = 0$, then $\mathbf{F} = \nabla f$, and if $\text{div } \mathbf{F} = 0$, then $\mathbf{F} = \nabla \times \mathbf{G}$.
\[\text{Poincaré lemma:} \] generalizes vector calculus theorems: if \(\text{curl} \, \mathbf{F} = 0 \), then \(\mathbf{F} = \nabla f \), and if \(\text{div} \, \mathbf{F} = 0 \), then \(\mathbf{F} = \nabla \times \mathbf{G} \).

\[\text{Recall: if } \alpha \text{ is closed, then locally } \alpha \text{ is exact; that is, if } \text{d} \alpha = 0, \text{ then locally } \alpha = \text{d} \beta \text{ for some } \beta. \]
Poincaré lemma: generalizes vector calculus theorems: if \(\text{curl } \mathbf{F} = 0 \), then \(\mathbf{F} = \nabla f \), and if \(\text{div } \mathbf{F} = 0 \), then \(\mathbf{F} = \nabla \times \mathbf{G} \).

Recall: if \(\alpha \) is closed, then locally \(\alpha \) is exact; that is, if \(d\alpha = 0 \), then locally \(\alpha = d\beta \) for some \(\beta \).

Calculus Examples: need not hold globally:

\[
\alpha = \frac{xdy - ydx}{x^2 + y^2}
\]

is closed (or as a vector field, has zero curl) but is not exact (not the gradient of any function on \(\mathbb{R}^2 \) minus the origin).
\(M \) and \(N \) oriented \(n \)-manifolds; \(\varphi : M \to N \) an orientation-preserving diffeomorphism, \(\alpha \) an \(n \)-form on \(N \) (with, say, compact support), then

\[
\int_M \varphi^* \alpha = \int_N \alpha.
\]
Identities for Vector Fields and Forms

- Vector fields on M with the bracket $[X, Y]$ form a **Lie algebra**; that is, $[X, Y]$ is real bilinear, skew-symmetric, and **Jacobi’s identity** holds:

$$[[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0.$$

Locally,

$$[X, Y] = (X \cdot \nabla)Y - (Y \cdot \nabla)X,$$

and on functions,

$$[X, Y][f] = X[Y[f]] - Y[X[f]].$$

- For diffeomorphisms φ and ψ,

$$\varphi_*[X, Y] = [\varphi_*X, \varphi_*Y] \quad \text{and} \quad (\varphi \circ \psi)_*X = \varphi_*\psi_*X.$$

- $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$ and $\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha$ for k- and l-forms α and β.

- For maps φ and ψ,

$$\varphi^*(\alpha \wedge \beta) = \varphi^*\alpha \wedge \varphi^*\beta \quad \text{and} \quad (\varphi \circ \psi)^*\alpha = \psi^*\varphi^*\alpha.$$
Identities for Vector Fields and Forms

- d is a real linear map on forms, $dd\alpha = 0$, and
 $$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$$
 for α a k-form.

- For α a k-form and X_0, \ldots, X_k vector fields,
 $$d\alpha(X_0, \ldots, X_k) = \sum_{i=0}^{k} (-1)^i X_i[\alpha(X_0, \ldots, \hat{X}_i, \ldots, X_k)]$$
 $$+ \sum_{0 \leq i < j \leq k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_k),$$
 where \hat{X}_i means that X_i is omitted. Locally,
 $$d\alpha(x)(v_0, \ldots, v_k) = \sum_{i=0}^{k} (-1)^i D\alpha(x) \cdot v_i(v_0, \ldots, \hat{v}_i, \ldots, v_k).$$

- For a map φ,
 $$\varphi^* d\alpha = d\varphi^* \alpha.$$
Identities for Vector Fields and Forms

○ **Poincaré Lemma.** If $d\alpha = 0$, then the k-form α is locally exact; that is, there is a neighborhood U about each point on which $\alpha = d\beta$. This statement is global on contractible manifolds or more generally if $H^k(M) = 0$.

○ $i_X\alpha$ is real bilinear in X, α, and for $h : M \to \mathbb{R}$,

$$i_{hX}\alpha = hi_X\alpha = i_X h\alpha.$$

Also, $i_Xi_X\alpha = 0$ and

$$i_X(\alpha \wedge \beta) = i_X\alpha \wedge \beta + (-1)^k\alpha \wedge i_X\beta$$

for α a k-form.

○ For a diffeomorphism φ,

$$\varphi^*(i_X\alpha) = i_{\varphi^*X}(\varphi^*\alpha), \quad \text{i.e.,} \quad \varphi^*(X \lrcorner \alpha) = (\varphi^*X) \lrcorner (\varphi^*\alpha).$$

○ If $f : M \to N$ is a mapping and Y is f-related to X, that is,

$$Tf \circ X = Y \circ f,$$
then
\[i_X f^* \alpha = f^* i_Y \alpha; \quad \text{i.e.,} \quad X \lrcorner (f^* \alpha) = f^* (Y \lrcorner \alpha). \]

- \(\mathcal{L}_x \alpha \) is real bilinear in \(X, \alpha \) and
 \[\mathcal{L}_X (\alpha \wedge \beta) = \mathcal{L}_X \alpha \wedge \beta + \alpha \wedge \mathcal{L}_X \beta. \]

- Cartan’s Magic Formula:
 \[\mathcal{L}_X \alpha = d i_X \alpha + i_X d \alpha = d(X \lrcorner \alpha) + X \lrcorner d \alpha. \]

- For a diffeomorphism \(\varphi \),
 \[\varphi^* \mathcal{L}_X \alpha = \mathcal{L}_{\varphi^* X} \varphi^* \alpha. \]

If \(f : M \to N \) is a mapping and \(Y \) is \(f \)-related to \(X \), then
\[\mathcal{L}_Y f^* \alpha = f^* \mathcal{L}_X \alpha. \]
Identities for Vector Fields and Forms

\((\mathcal{L}_X \alpha)(X_1, \ldots, X_k) = X[\alpha(X_1, \ldots, X_k)] - \sum_{i=0}^{k} \alpha(X_1, \ldots, [X, X_i], \ldots, X_k).\)

Locally,

\((\mathcal{L}_X \alpha)(x) \cdot (v_1, \ldots, v_k) = (D \alpha_x \cdot X(x))(v_1, \ldots, v_k) + \sum_{i=0}^{k} \alpha_x(v_1, \ldots, DX_x \cdot v_i, \ldots, v_k).\)

More identities:

- \(\mathcal{L}_f X \alpha = f \mathcal{L}_X \alpha + df \wedge i_X \alpha;\)
- \(\mathcal{L}_{[X,Y]} \alpha = \mathcal{L}_X \mathcal{L}_Y \alpha - \mathcal{L}_Y \mathcal{L}_X \alpha;\)
- \(i_{[X,Y]} \alpha = \mathcal{L}_X i_Y \alpha - i_Y \mathcal{L}_X \alpha;\)
- \(\mathcal{L}_X d\alpha = d\mathcal{L}_X \alpha;\)
- \(\mathcal{L}_X i_X \alpha = i_X \mathcal{L}_X \alpha;\)
• $\mathcal{L}_X(\alpha \wedge \beta) = \mathcal{L}_X\alpha \wedge \beta + \alpha \wedge \mathcal{L}_X\beta$.
Identities for Vector Fields and Forms

- **Coordinate formulas:** for \(X = X^l \partial / \partial x^l \), and

\[
\alpha = \alpha_{i_1 \ldots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k},
\]

where \(i_1 < \cdots < i_k \):

- \(d\alpha = \left(\frac{\partial \alpha_{i_1 \ldots i_k}}{\partial x^l} \right) dx^l \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} \),

- \(\mathbf{i}_X \alpha = X^l \alpha_{li_2 \ldots i_k} dx^{i_2} \wedge \cdots \wedge dx^{i_k} \),

- \(\mathcal{L}_X \alpha = X^l \left(\frac{\partial \alpha_{i_1 \ldots i_k}}{\partial x^l} \right) dx^{i_1} \wedge \cdots \wedge dx^{i_k} + \alpha_{li_2 \ldots i_k} \left(\frac{\partial X^l}{\partial x^{i_1}} \right) dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_k} + \ldots. \)