
CALIFORNIA INSTITUTE OF TECHNOLOGY
Control and Dynamical Systems

CDS 101

D. MacMartin
Fall 2013

Problem Set #1 Issued: 30 Sep 13
Due: 9 Oct 13

Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

1. Åström and Murray, Exercise 1.2

2. Consider the cruise-control example discussed in class, with

mv̇ = −av + u + w

where u is the control input (force applied by engine) and w the disturbance input (force
applied by hill, etc.), which will be ignored below (w = 0). An open-loop control strategy to
achieve a given reference speed vref would be to choose

u = âvref

where â is your estimate of a, which may not be accurate. Assume m, a and â are all positive.

(a) Compute the steady-state response for both the open-loop strategy above, and for the
feedback law

u = −kp(v − vref)

and compare the steady-state (with w = 0) as a function of β = a/â when kp = 10â.
(You should solve the problem analytically, and then plot the response vss/vref as a
function of β for both the open-loop and proportional-gain feedback law.)

(b) Now consider a proportional-integral control law

u = −kp(v − vref) − ki

∫ t

0

(v − vref)dt

and again compute the steady state solution (assuming stability) and compare the re-
sponse with the proportional gain case from above. (Note that if you define q =

∫ t

0
(v − vref)dt

then q̇ = v − vref .)

3. Åström and Murray, Exercise 2.6, parts (a) and (b)



CALIFORNIA INSTITUTE OF TECHNOLOGY
Control and Dynamical Systems

CDS 110a

D. MacMartin
Fall 2013

Problem Set #1 Issued: 30 Sep 13
Due: 9 Oct 13

Note: In the upper left hand corner of the second page of your homework set, please
put the number of hours that you spent on this homework set (including reading).

1. Åström and Murray, Exercise 1.2

2. Åström and Murray, Exercise 2.1

3. Consider the cruise-control example discussed in class, with

mv̇ = −av + u + w

where u is the control input (force applied by engine) and w the disturbance input (force
applied by hill, etc.), which will be ignored below (w = 0). An open-loop control strategy to
achieve a given reference speed vref would be to choose

u = âvref

where â is your estimate of a, which may not be accurate. Assume m, a, and â are all positive.

(a) Compute the steady-state response for both the open-loop strategy above, and for the
feedback law

u = −kp(v − vref)

and compare the steady-state (with w = 0) as a function of β = a/â when kp = 10â.
(You should solve the problem analytically, and then plot the response vss/vref as a
function of β for both the open-loop and proportional-gain feedback law.)

(b) Now consider a proportional-integral (PI) control law

u = −kp(v − vref) − ki

∫ t

0

(v − vref)dt

and again compute the steady state solution (assuming stability) and compare the re-
sponse with the proportional gain case from above. (Note that if you define q =

∫ t

0
(v − vref)dt

then q̇ = v − vref .)

(c) Next, simulate the response of the system (using ode45 in Matlab or odeint in SciPy
or something similar) with the PI control law above with m = 1, a = 0.1, w = 0, and
“input” to the system of vref = sin(ωt), for ω=0.01, 0.1, 1, and 10 rad/sec. In each case,
you should simulate at least 10 cycles; after some initial transient, the response should be
periodic. Compute the peak-to-peak amplitude of the final period for the error v − vref ,
and plot this as a function of frequency on a log-log scale, for the following control gains:

i. kp = 1, ki = 0



ii. kp = 1, ki = 1

iii. kp = 1, ki = 10

(If you want to see interesting behaviour, simulate the final case at ω = 3.3 rad/sec as
well.)

4. Consider a damped spring–mass system with dynamics

mq̈ + cq̇ + kq = F.

Let ω0 =
√

k/m be the natural frequency and ζ = c/(2
√

km) be the damping ratio.

(a) Show that by rescaling the equations, we can write the dynamics in the form

q̈ + 2ζω0q̇ + ω2
0q = ω2

0u, (S1.1)

where u = F/k. This form of the dynamics is that of a linear oscillator with natural
frequency ω0 and damping ratio ζ.

(b) Show that the system can be further normalized (you will need to rescale the time
variable as well as identifying states) and written in the form

dz1

dτ
= z2,

dz2

dτ
= −z1 − 2ζz2 + v. (S1.2)

The essential dynamics of the system are governed by a single damping parameter ζ.
The Q-value defined as Q = 1/2ζ is sometimes used instead of ζ.

(c) Show that the solution for the unforced system (v = 0) with no damping (ζ = 0) is given
by

z1(τ) = z1(0) cos τ + z2(0) sin τ, z2(τ) = −z1(0) sin τ + z2(0) cos τ.

Invert the scaling relations to find the form of the solution q(t) in terms of q(0), q̇(0)
and ω0.

(d) Consider the case where ζ = 0 and u(t) = sinωt, ω > ω0. Solve for z1(τ), the normalized
output of the oscillator, with initial conditions z1(0) = z2(0) = 0 and use this result to
find the solution for q(t).

(Parts (a) and (b) are from AM 2.6.)
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