DHCP-201@caltech.edu
Lynch, Ch. 12

Goal: "Impossibility" Result

Conclusion: Some timing may be required or settle for probabilistic success

[Diagram showing synch and async transitions]
Problem: Agreement

Fairness: one task/process
- processes take \(\infty \) steps
 unless stopped
- each user sends exactly one init.

Execution \(\varphi \) is successful if:
1. well-formedness
 \(\text{track}(x) \cup \{v_i \} \in \varphi \), \(\text{init}(v), \text{init}(v_i), \text{decide}(v_i) \)
2. agreement
 all decisions are the same
3. validity
 if all inits are \(v \), then all decides are \(v \)
4. termination

\[\text{Diag. 17.1} \]

\(f \)-failure termination
- if \(\text{init} \) on all ports
- if ports stopped
 then unstopped
 ports decide

\(4a \) Wait-free \((f=n) \)
\(4b \) Failure-free \((f=0) \)
\(4c \) Single-failure \((f=1) \)
Restrict to Read/Write Memory
Enabling depends only on process state

Read
\[P_i := f(x_j) \]

Write
\[x_j := f(P_i) \]

(not) Modify
\[(P_i, x_j) := f(P_i, x_j) \]

Proof outline:
① Simplify assumptions, defns
② Impossibility for Wait-free alg
③ " Single-failure alg
Assumptions (WLOG)
- \(V \subseteq \{0, 1\} \)
- users generate exactly one \(\text{init} \)
- determinism
- every non-failed process has locally exactly one enabled step
 (add dummy read steps)

```
defn: initialization = init(v_1), init(v_2), ..., init(v_n)
```

Assume all executions begin with initialization

Valence

Final execution of \(\delta \) is:

- 0-valent: for \(\delta \), all extensions
 - all decisions are 0
 - and some decision occurs

- 1-valent: some

- univalent

- bivalent: no decision
 - has \(\leq \) \(\{ \text{extensions} \} \)

- zero decisions

Lemma: For a working algorithm, excess are unique
Suppose A is a working single-failure alg.

Lemma: A has bivalent initialization.

Suppose all initializations univalent.

$$\begin{align*}
\text{init}_1(0) \text{ init}_2(0) \ldots \text{ init}_n(0) & \rightarrow 0 \\
\text{init}_1(1) & \rightarrow 0 \\
\alpha & \rightarrow 0 \\
\beta & \rightarrow 1 \\
\text{indistinguishable} & \rightarrow \\
\text{init}_1(1) \text{ init}_2(1) \ldots \text{ init}_n(1) & \rightarrow 1
\end{align*}$$

Consider

$$\begin{align*}
\alpha & \rightarrow 0 \\
\beta & \rightarrow 1
\end{align*}$$
Defn: Finite failure free exec α is a decider if
- α is bivalent
- $\forall i \exists i$ univalent
 - unique locally enabled step of P_i

Lemma: A is a working wait-free alg, A has a decider exec β.

Pf: Suppose no such α.

Start with bivalent initialization α_0.

Extend to infinite bivalent exec α.

If \exists st. P_i takes ∞ steps

Consider $\exists \alpha_1$ with all P_i taking finite # of steps

Step 1 after last step

$\alpha_1 \in \{1, 2, ..., \infty\}$

X's fair α_1 decides

α_1, α_2 are indistinguishable $\Rightarrow \alpha_1$ decides

\Rightarrow at some point α must become univalent in any extension \Rightarrow
Thm: No wait-free writing alg.

Pf: Suppose a waiting wait-free alg.

\[\Rightarrow \exists \text{ decider exec } \alpha. \]

\[\alpha \text{ is } 0\text{-valent, } \alpha_i \text{ is } 1\text{-valent} \]

Case 1: Suppose \(i \) is a read step

\[\text{in init: } \{ x_i \text{ stop; } j \rightarrow 0 \} \]

\[\text{Case 2: } j \text{ sen, same.} \]

\[\text{Case 3a: } i, j \text{ write to different vars.} \]

\[\text{inin: } \{ x_{ij} \rightarrow 0 \} \]

\[\{ x_{ij} \rightarrow 1 \} \]

\[\text{Case 3b: } i, j \text{ write to some var} \]

\[\text{inin: } \{ x_{ij} \text{ stop; } j \rightarrow 0 \} \]

\[\{ x_{ij} \text{ stop; } i \rightarrow 0 \} \]

\[\therefore A \text{ does not exist.} \]
\(\text{With Read/Modify/Write:} \)

\(A_{5,5}: \) Each process waits for init

\(\text{shared variable } x:= \text{"unknown"} \)

\(\text{init}(v), \Rightarrow \)

1) \(P_i:= v \)

2) \(\text{Modify:} \)

\[
(P_i, x):= \begin{cases}
(P_i, P_c) & \text{if } x=\text{"unknown"}, \\
(x, x) & \text{otherwise}
\end{cases}
\]

3) \(\text{decide}_i(P_c) \)