Hiding operation for <code>sign</code>:

\[\exists \bar{\epsilon} \subseteq \text{out}(s) \]

\[\text{hide}_{\bar{\epsilon}}(s) = s' \]

\[\text{in}(s') = \text{in}(s) \]

\[\text{out}(s') = \text{out}(s) - \bar{\epsilon} \]

\[\text{inl}(s') = \text{int}(s) \cup \bar{\epsilon} \]

\[\bar{\eta} = \text{hide}(\eta) \]

\[\text{sign}(\bar{\eta}) - \text{hide}_{\phi}(\text{sign}(\eta)) \]

\[\bar{\phi} \subseteq \text{out}(\eta) \].
Fairness

Event: occurrence of an action in a sequence

If α is an exec. frag. of A, it is said to be fair if the following properties hold for each class $C \subseteq \text{tasks}(A)$:

- $\alpha \rightarrow \text{finite}$, then α is enabled in the last state

- $\alpha \rightarrow \text{infinite}$, α contains infinitely many events from C or it has infinitely many occurrences of states in which C isn't enabled.
\(\text{fairexecs}(A) \) - set of fair execs. of A

\(\text{fairtraces}(A) \) - similar

py 20c - examp. 8.1.3
py 213 - examp. 8.3.2
py 210 → 8.2.1