Goals:
• Derive the linear quadratic regulator and demonstrate its use

Reading:
• Friedland, Chapter 9 (different derivation, but same result)
• RMM course notes (available on web page)
• Lewis and Syrmos, Section 3.3

Homework #2
• Design LQR controllers for some representative systems
• Due Wed, 18 Jan by 5 pm, in box outside 109 Steele
Review from last lecture

Trajectory Generation

Controller

Process

Estimator

Trajectory Generation via Optimal Control:

\[
\begin{align*}
\dot{x} &= f(x, u) \quad x = \mathbb{R}^n \\
x(0) \text{ given} &\quad u \in \Omega \subset \mathbb{R}^p \\
J &= \int_0^T L(x, u) \, dt + V(x(T)) \\
\psi(x(T)) &= 0
\end{align*}
\]

Today: focus on special case of a linear quadratic regulator

\[
\begin{align*}
\dot{x} &= Ax + Bu \quad x = \mathbb{R}^n \\
x(0) \text{ given} &\quad u \in \mathbb{R}^p \\
J &= \int_0^T x^T Q x + u^T R u \, dt + x(T)^T P_1 x(T) \\
\text{no terminal constraints}
\end{align*}
\]
Linear Quadratic Regulator (finite time)

Problem Statement

\[\dot{x} = Ax + Bu \quad x = \mathbb{R}^n \]
\[x(0) \text{ given} \quad u \in \mathbb{R}^p \]

\[J = \frac{1}{2} \int_0^T (x^T Q x + u^T R u) \, dt + \frac{1}{2} x^T(T) P_1 x(T) \]

- Factor of 1/2 simplifies some math below; optimality is not affected

Solution: use the maximum principle

\[H = x^T Q x + u^T R u + \lambda^T (Ax + Bu) \]

\[\dot{x} = \left(\frac{\partial H}{\partial \lambda} \right)^T = Ax + Bu \quad x(0) = x_0 \]

\[-\dot{\lambda} = \left(\frac{\partial H}{\partial x} \right)^T = Q x + A^T \lambda \quad \lambda(T) = P_1 x(T) \]

\[0 = \frac{\partial H}{\partial u} = Ru + \lambda^T B \quad \implies \quad u = -R^{-1} B^T \lambda. \]

- This is still a two point boundary value problem \(\Rightarrow \) hard to solve
- Note that solution is linear in \(x \) (because \(\lambda \) is linear in \(x \), treated as an input)
Simplified Form of the Solution

Can simplify solution by guessing that $\lambda = P(t) x(t)$

\[-\dot{\lambda} = \left(\frac{\partial H}{\partial x} \right)^T = Qx + A^T \lambda \quad \lambda(T) = P_1 x(T)\]

\[
\begin{align*}
\dot{\lambda} &= \dot{P} x + P \dot{x} = \dot{P} x + P (Ax - BR^{-1}B^T P)x \\
&\Downarrow \\
-\dot{P} x - PAx + PBR^{-1}BPx &= Qx + A^T Px.
\end{align*}
\]

Solution exists if we can find $P(t)$ satisfying

\[-\dot{P} = PA + A^T P - PBR^{-1}B^T P + Q \quad P(T) = P_1\]

• This equation is called the *Riccati ODE*; matrix differential equation
• Can solve for $P(t)$ backwards in time and then apply $u(t) = -R^{-1} B P(t) x$
• Solving $x(t)$ forward in time gives optimal state (and input): $x^*(t), u^*(t)$
• Note that $P(t)$ can be computed once (ahead of time) \Rightarrow allows us to find the optimal trajectory from different points just by re-integrating state equation with optimal input
Finite Time LQR Summary

Problem: find trajectory that minimizes

\[\dot{x} = Ax + Bu \quad x = \mathbb{R}^n \]

\[x(0) \text{ given} \quad u \in \mathbb{R}^p \]

\[J = \frac{1}{2} \int_0^T \left(x^T Q x + u^T R u \right) dt + \frac{1}{2} x^T(T) P_1 x(T) \]

Solution: time-varying linear feedback

\[u(t) = -R^{-1} B P(t)x. \]

\[-\dot{P} = PA + A^T P - PB R^{-1} B^T P + Q \quad P(T) = P_1 \]

- Note: this is in feedback form ⇒ can actually eliminate the controller (!)
Infinite Time LQR

Extend horizon to $T = \infty$ and eliminate terminal constraint:

\[\dot{x} = Ax + Bu \quad x = \mathbb{R}^n \]

$x(0)$ given \quad \quad $u \in \mathbb{R}^p$

\[J = \int_0^\infty (x^T Q x + u^T R u) \, dt \]

Solution: same form, but can show P is constant

\[u = K x \quad K = -R^{-1} B^T P \]

\[0 = PA + A^T P - PBR^{-1}B^T P + Q \]

Remarks

- In MATLAB, $K = \text{lqr}(A, B, Q, R)$
- Require $R > 0$ but $Q \geq 0$ + must satisfy “observability” condition
- Alternative form: minimize “output” $y = H x$

\[L = \int_0^\infty x^T H^T H x + u^T R u \, dt = \int_0^\infty \| H x \|^2 + u^T R u \, dt \]

- Require that (A, H) is observable. Intuition: if not, dynamics may not affect cost \Rightarrow ill-posed. We will study this in more detail when we cover observers
Applying LQR Control

Application #1: trajectory generation
- Solve for \((x_d, y_d)\) that minimize quadratic cost over finite horizon (requires linear process)
- Use local controller to regulate to desired trajectory

Application #2: trajectory tracking
- Solve LQR problem to stabilize the system to the origin \(\Rightarrow\) feedback \(u = Kx\)
- Can use this for local stabilization of \(\text{any}\) desired trajectory
- Missing: so far, have assumed we want to keep \(x\) small (versus \(x \to x_d\))
LQR for trajectory tracking

Goal: design local controller to track \(x_d \):

Approach: regulate the error dynamics

- Let \(e = x - x_d \), \(v = u - u_d \) and assume \(f(x, u) = f(x) + g(x)u \) (simplifies notation)

\[
\dot{e} = \dot{x} - \dot{x}_d = f(x) + g(x)u - f(x_d) + g(x_d)u_d \\
= f(e + x_d) - f(x_d) + g(e + x_d)(v + u_d) - g(x_d)u_d \\
= F(e, v, x_d(t), u_d(t))
\]

- Now linearize the dynamics around \(e = 0 \) and design controller \(v = Ke \)
- Final control law will be \(u = K(x - x_d) + u_d \)
- Note: in general, linearization will depend on \(x_d \Rightarrow u = K(x_d)x \) ← “gain scheduling”
Choosing LQR weights

Most common case: diagonal weights

\[Q = \begin{bmatrix} q_1 & \cdots & \cdot \\ \cdot & \cdots & \cdot \\ \cdot & \cdots & q_n \end{bmatrix} \quad R = \rho \begin{bmatrix} r_1 & \cdots & \cdot \\ \cdot & \cdots & \cdot \\ \cdot & \cdots & r_n \end{bmatrix} \]

- Weight each state/input according to how much it contributes to cost
- Eg: if error in \(x_1 \) is 10x as bad as error in \(x_2 \), then \(q_1 = 10 \cdot q_2 \)
- OK to set some state weights to zero, but all input weights must be > 0
- Remember to take units into account: eg for ducted fan if position error is in meters and pitch error is in radians, weights will have different “units”

Remarks

- LQR will \textit{always} give a stabilizing controller, but no guaranteed margins
- LQR shifts design problem from loop shaping to weight choices
- Most practical design uses LQR as a first cut, and then tune based on system performance
Example: Ducted Fan

Stabilization:
- Given an equilibrium position \((x_d, y_d)\) and equilibrium thrust \(f_{2d}\), maintain stable hover
- Full state available for feedback

Tracking:
- Given a reference trajectory \((x_r(t), y_r(t))\), find a feasible trajectory \(\vec{x}_d, u_d\) and a controller \(u = \alpha(x, x_d, u_d)\) such that \(x \to x_d\)

Equations of motion

\[
\begin{align*}
m\ddot{x} &= f_1 \cos \theta - f_2 \sin \theta - c_d, x(\theta, \dot{x}) \\
m\ddot{y} &= f_1 \sin \theta + f_2 \cos \theta - mg - c_d, y(\theta, \dot{y}) \\
J\ddot{\theta} &= rf_1 - mg \sin \theta - c_d, \theta(\theta, \dot{\theta})
\end{align*}
\]

LQR design: see lqr_dfan.m (available on course web page)
Variation: Integral Action

Limitation in LQR control: perfect tracking requires perfect model
- Control law is \(u = K (x - x_d) + u_d \Rightarrow u_d \) must be perfect to hold \(e = 0 \)
- Alternative: use integral feedback to give zero steady state error

\[
\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ y - r \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ Cx - r \end{bmatrix} \quad \text{integral of (output) error}
\]

- Now design LQR controller for extended system (including integrator weight)

\[
u = K(x - x_d) - K_i z + u_d
\]

equilibrium value \(\Rightarrow y = r \Rightarrow 0 \) steady state error
Example: Cruise Control

\[m \ddot{v} = F - F_d \]

Linearized around \(v_0 \):

\[\ddot{v} = a \ddot{v} - mg\theta + mb \ddot{u} \]

\[F = \alpha_n u T(\alpha_n v) \]

\[F_d = mgC_r + \frac{1}{2} \rho C_v Av^2 + mg\theta, \quad y = v = \ddot{v} + v_0 \]

Step 1: augment linearized (error) dynamics with integrator

\[
\frac{d}{dt} \begin{bmatrix} \ddot{v} \\ z \end{bmatrix} = \begin{bmatrix} \frac{a}{m} & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \ddot{v} \\ z \end{bmatrix} + \begin{bmatrix} b \\ 0 \end{bmatrix} u + \begin{bmatrix} -g \\ 0 \end{bmatrix} \theta + \begin{bmatrix} 0 \\ r - v_0 \end{bmatrix}
\]

Step 2: choose LQR weights and compute LQR gains

\[
Q = \begin{bmatrix} q_1 & 0 \\ 0 & q_2 \end{bmatrix} \quad R = \rho \quad \rightarrow \quad K = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}
\]

Note: linearized about \(v_0 \) but try to maintain speed \(r \) (near \(v_0 \))

Step 3: implement controller

\[
\dot{z} = v - r
\]

\[
u = u_0 + k_1 (v - r) + k_2 z \quad \text{PI controller}
\]
Application #1: trajectory generation
- Solve for \((x_d, y_d)\) that minimize quadratic cost over finite horizon
- Use local controller to track trajectory

Application #2: trajectory tracking
- Solve LQR problem to stabilize the system
- Solve algebraic Riccati equation to get state gain
- Can augment to track trajectory; integral action

\[J = \frac{1}{2} \int_0^T (x^T Q x + u^T R u) \, dt \]
\[+ \frac{1}{2} x^T(T) P_1 x(T) \]

\[J = \int_0^\infty (x^T Q x + u^T R u) \, dt \]
Announcements

Mailing list
• If you didn’t get e-mail about TA office hours, send email to murray@cds

Late homework policy
• No late homework without prior permission
• Usually willing to give a few extra days the first time you ask
• Sickness, conferences and other unavoidable conflicts usually work

Lecture recordings
• Will be posting audio recordings of lectures (along with slides) on web site