Analysis and Design of Feedback Systems:
An Introduction for Scientists and Engineers

Karl Johan Åström
Department of Automatic Control
Lund Institute of Technology

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

DRAFT v0.1, 24 August 2003
Copyright 2003. All rights reserved.
Preface

This book provides an introduction to the basic principles and tools for design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information, and economic systems. To this end, we have chosen to keep the mathematical pre-requisites to a minimum while being careful not to sacrifice rigor in the process.

This book was originally developed for use in an experimental course at Caltech involving undergraduates and graduate students from a wide variety of disciplines. The course included undergraduates at the junior and senior level in traditional engineering disciplines, as well as first and second year graduate students in engineering and science. This included graduate students in biology, computer science, and economics, requiring a broad approach that emphasized basic principles and do not focus on applications in a given area.
Contents

1 Introduction
 1.1 What is Feedback? .. 1
 1.2 What is Control? ... 3
 1.3 Control System Examples 5
 1.4 Properties of Feedback 16
 1.5 Outline of the Book ... 19
 1.6 References .. 19

2 System Modeling
 2.1 Introduction .. 21
 2.2 Two Views on Dynamics 22
 2.3 Linear Differential Equations 26
 2.4 Frequency Response .. 34
 2.5 State Models .. 36
 2.6 Difference Equations ... 40
 2.7 References .. 40

3 Stability and Performance
 3.1 Qualitative features of nonlinear dynamical systems 41
 3.2 Stability ... 45
 3.3 Local Versus Global Behavior 49
 3.4 System Performance Measures 50
 3.5 Second Order Systems .. 52
 3.6 Further Reading ... 52
 3.7 Exercises ... 52

4 Linear Input/Output Systems
 4.1 Introduction .. 53
 4.2 Properties of Linear Systems 55