Bibliography


BIBLIOGRAPHY


INDEX
feedback and feedforward, 2-25
feedback connection, 9-15, 9-16, 10-21, 10-22
feedback controller, 9-16, 12-1
feedback linearization, 6-32–6-33
feedback loop, 1-4, 10-1, 12-1, 13-12
feedback uncertainty, 13-3, 13-10
feedback: positive, 2-17
feedforward, 1-15, 1-16, 8-19–8-22, 9-16, 12-1, 12-5, 12-7
business, 1-16
combining with feedback, 2-27
difficulties, 2-26
economy, 1-16
sensitivity to process variations, 2-27
system inversion, 2-25
Furuta pendulum, 5-36
filters
active, 6-24
for disturbance weighting, 13-27
for measurement signals, 1-15, 8-26, 13-13
zz, see also band-pass filters; high-pass filters; low-pass filters
financial systems, see economic systems
finite escape time, 5-3
finite state machine, 1-22, 3-8, 4-5, 4-12
first-order systems, 6-4, 6-35, 9-9, 9-24, 9-26
fisheries management, 4-30
flatness, see differential flatness
flight control, 1-6, 1-13, 3-30, 6-33
X-29 aircraft, 12-27
zz, see also vectored thrust aircraft
flow, of a vector field, 3-3, 5-5
flow in a tank, 5-33
flow model (queuing systems), 3-32, 10-26, 11-24
flyball governor, see centrifugal governor
force feedback, 1-7
forced response, 6-3, 9-3
forced solution, 6-3
Forrester, J. W., 1-10
Fourier, J. B. J., 3-39, 9-32
frequency domain, 9-1–9-3, 10-1, 10-19, 12-1
frequency response, 2-4, 3-5, 3-20, 3-21, 6-22–6-27, 9-2, 10-24, 11-11, 12-8
relationship to Bode plot, 9-23
relationship to Nyquist plot, 10-4, 10-6
second-order systems, 7-20, 9-28
system identification using, 9-30
fully actuated systems, 9-13
fundamental limits, see control: fundamental limitations
Furuta pendulum, 5-36
gain, 1-18, 2-4, 3-21, 4-8, 6-23, 6-24, 7-21, 9-2, 9-5, 9-11, 9-23, 10-12, 10-19–10-22, 13-1
observer, see observer gain of a system, 10-19
reference, 7-30
state feedback, 7-11, 7-15, 7-30, 7-32
zero frequency, see zero frequency gain
zz, see also integral gain
gain crossover frequency, 10-13, 10-14, 12-8, 12-22, 13-19
gain crossover frequency inequality, 12-22, 12-24
gain curve (Bode plot), 9-23–9-27, 10-16, 12-13
gain margin, 10-12–10-15
from Bode plot, 10-13
reasonable values, 10-15
gain scheduling, 8-21, 13-28
gain-bandwidth product, 4-10, 9-7, 13-15
Gang of Four, 12-3, 12-35, 13-12
Gang of Seven, 12-3
Gang of Six, 12-8
gene regulation, 1-10, 3-37, 6-36, 9-28
general solution to the homogeneous equation, 2-2
genealogy, 3-42, 5-21
global behavior, 5-10, 5-27–5-30
Glover, K., 12-34, 13-28
glucose regulation, see insulin-glucose dynamics
Golomb, S., 4-1
governor, see centrifugal governor
H∞ control, 13-25–13-28, 13-30
haptics, 2-24
Harrier AV-8B aircraft, 3-30, 3-31
heat propagation, 9-8
Heaviside, O., 6-34
Heaviside step function, 6-20, 6-34
Hellerstein, J. L., 1-26, 4-17
high-frequency roll-off, 12-13, 13-13, 13-21
high-pass filter, 9-28
Hill function, 3-37
Hoagland, M. B., 1-1
Hodgkin-Huxley equations, 3-38
homeostasis, 1-3, 3-36
homogeneous equation, 2-2
homogeneous solution, 6-3, 6-6, 9-12
Horowitz, I. M., 8-26, 12-34, 13-23, 13-28
human-machine interface, 1-22, 4-1, 4-4
hybrid system, 3-8, 3-18
hysteresis, 1-17, 10-23
identification, see system identification
impedance, 9-6, 11-20
impedance control, 2-24
implementation, controllers, see analog implementation; computer implementation
impulse function, 6-16, 6-34, 7-4
impulse response, 6-5, 6-16, 6-17, 9-10
inductor, transfer function for, 9-6
inertia matrix, 3-11, 6-33
infinity norm, 10-20, 13-26
information systems, see also congestion control; web server control, 1-8, 3-32–3-36
initial condition, 5-2, 5-5, 5-8, 6-2, 6-6, 6-7, 6-14, 8-15
initial condition response, 6-3, 6-6–6-9, 6-12, 6-14, 6-17, 9-3
initial value problem, 5-2
inner loop control, 12-31, 12-33
input sensitivity function, see load sensitivity function
input/output models, see also frequency response;
steady-state response: step response, 1-5, 3-4, 3-5, 6-2, 6-15–6-28, 9-1, 10-20 and transfer functions, 9-10 and uncertainty, 3-28, 13-3 from experiments, 9-30 relationship to state space models, 3-6, 5-1, 6-16 steady-state response, 6-19 inputs, 3-3, 3-6
insect flight control, 3-23–3-24
instrumentation, 1-7, 4-7
insulin-glucose dynamics, 1-2, 4-24–4-25
time constant, 11-2
integral gain, 1-18, 11-2, 11-4, 11-7
integrator, see also double integrator, 3-23, 6-9, 7-30, 7-31, 8-5, 9-9, 9-24, 10-17, 11-16
integrator windup, 1-18, 8-26, 11-14–11-15, 11-24
conditional integration, 11-24
intelligent machines, see robotics
internal model principle, 8-13, 8-21
internal stability, 12-4
Internet, see also congestion control, 1-8, 1-9, 4-11, 4-13, 4-16, 4-29
Internet Protocol (IP), 4-13
invariant set, 5-25, 5-28
inverse, 2-26
inverse model, 6-32, 12-6
inverse response, 2-26, 10-18, 10-26
inverted pendulum, see also balance systems, 3-12–3-13, 4-5, 5-6, 5-14, 5-25, 5-27, 5-35, 5-36, 10-10, 12-27
Jacobian linearization, 6-29–6-31
Janert, P. K., 1-26
Jordan block, 6-9
Jordan form, 6-9–6-12, 6-35, 7-22
Kalman, R. E., 7-1, 7-32, 8-1, 8-23, 8-26
Kalman decomposition, 8-22–8-24, 9-21, 9-33, 9-35
Kalman filter, 8-14–8-19, 8-26, 13-25 extended, 8-21
Kalman-Bucy filter, 8-17
Kelly, F. P., 4-16
Kepler, J., 3-2
Keynesian economic model, 3-40, 6-36
Krasovski-Lasalle principle, 5-24–5-25
LabVIEW, 5-29, 6-34
lag, see phase lag
lag compensation, 12-13–12-15
Laplace transforms, xi, 9-8
Laplacian matrix, 3-36
Lasalle’s invariance principle, see Krasovski-Lasalle principle
lead, see phase lead
lead compensation, 12-14–12-17, 12-32, 12-36
limit cycle, 4-27, 5-7, 5-16, 5-17, 5-29, 10-22, 10-23
linear quadratic control, 7-25–7-29, 8-16, 8-26, 13-24–13-25
linear systems, 3-4, 3-9, 4-10, 5-11, 6-1–6-34, 8-22, 9-3, 9-32, 10-20
linear time-invariant systems, 3-4, 3-9, 6-4
linearizability, 6-4
linearizability, 5-15, 5-23, 6-2, 6-28–6-33, 8-20, 8-21, 13-1
Lipschitz continuity, 5-4
load disturbances, see also disturbances, 12-1, 13-13
load sensitivity function, 12-3
local behavior, 5-9, 5-15, 5-24, 5-27, 6-29
locally asymptotically stable, 5-9
logistic growth model, 4-25, 4-26, 4-30
loop analysis, 10-1, 12-1
loop shaping, 10-4, 12-12–12-17, 12-33, 13-23
design rules, 12-14
fundamental limitations, 12-21–12-30
zz, see also Bode’s loop transfer function
loop transfer function, see also Bode’s loop transfer function, 10-1–10-4, 10-12–10-14, 10-21, 12-1, 12-4, 12-12, 12-13, 12-16, 12-26, 12-34
Lotus Notes server, see e-mail
Lyapunov equation, 5-20, 5-35
Lyapunov functions, 5-17, 5-18, 5-20, 5-21, 5-27, 5-34, 6-35
design of controllers using, 5-25, 5-31
existence of, 5-20
Lyapunov stability analysis, 3-20, 5-17–5-26, 5-33
discrete time, 5-35
magnitude, 2-4
manifold, 5-26
margins, see stability margins
materials science, 1-6
Mathematica, 3-19, 5-29, 6-34
MATLAB, 1-27, 3-19, 5-29, 6-34, 7-34
acker, 7-15, 8-11
dlqe, 8-16
dlqr, 7-29
hinfsyn, 13-26
jordan, 6-10
linmod, 6-30
lqr, 7-25
place, 7-15, 7-24, 8-11
trim, 6-30
matrix exponential, 6-6–6-9, 6-13, 6-15, 6-33, 6-34
coordinate transformations, 6-18
Jordan form, 6-10
second-order systems, 6-34
maximum complementary sensitivity, 13-8, 13-19
maximum selector, 1-20
maximum sensitivity, 12-10, 13-6, 13-20
measured signals, 3-6, 3-9, 5-1, 8-1, 8-14, 8-26, 12-2, 12-4, 13-25
measurement noise, 1-4, 1-15, 8-1, 8-3, 8-14, 8-15, 8-17, 9-16, 11-18, 12-1–12-3, 12-13, 13-13
response to, 12-11–12-12, 13-13–13-14
mechanical systems, 3-6, 3-11, 3-20, 3-29, 3-39, 6-32
mechanics, 3-2–3-3, 3-5, 5-32, 6-1
minimal model
(insulin-glucose), see also insulin-glucose dynamics, 4-24, 4-25
minimum phase, 10-17, 10-24, 12-21
minimum selector, 1-20
Modelica, 3-7
modeling, 1-5, 3-1–3-8, 3-39, 4-1
control perspective, 3-5
discrete control, 3-34
discrete-time, 3-13, 6-27–6-28
frequency domain, 9-1–9-3
from experiments, 3-24–3-26
model reduction, 1-5
normalization and scaling, 3-26
of uncertainty, 3-27–3-29
simplified models, use of, 3-6, 11-7, 13-2, 13-8, 13-9
software for, 3-7, 6-30, 6-33
state space, 3-9–3-21
uncertainty, see uncertainty
modes, 6-12–6-14, 9-12
relationship to poles, 9-13
motion control systems, 3-29–3-31, 8-26
motors, electric, 3-42, 7-34, 8-28
multi-input, multi-output systems, see also input/output models, 10-20, 12-4, 12-14
multiplicative uncertainty, 13-3, 13-10
nanopositioner (AFM), 10-15, 13-20
natural frequency, 7-19
negative definite function, 5-18
negative feedback, 1-12, 1-16, 4-9, 7-10, 10-1, 11-5
Nernst’s law, 3-39
networking, see also congestion control, 1-8, 3-22, 4-16
neural systems, 1-7, 3-24, 3-38, 11-5, 11-6
neutral stability, 5-8–5-10
Newton, I., 3-2
Nichols, N. B., 6-33, 11-10, 12-33
Nichols chart, 13-24
Nobel Prize, 1-7, 3-39, 4-17
noise, see disturbances;
measurement noise
noise attenuation, 9-29, 12-11–12-12
noise cancellation, 5-31
noise sensitivity function, 12-3
nonlinear systems, 3-6, 5-1, 5-4, 5-7, 5-15, 5-17, 5-21, 5-27–5-32, 8-2, 8-20, 8-21, 10-20–10-22
linear approximation, 5-15, 5-23, 6-29, 6-36, 13-1
system identification, 3-41
nonminimum phase, see also inverse response, 10-17, 10-18, 10-26, 12-21–12-23
nonunique solutions (ODEs), 5-3
normalized coordinates, 3-26–3-27, 3-41, 6-31
norms, 10-19–10-20
Nyquist, H., 10-1, 10-24
Nyquist criterion, 10-5, 10-7, 10-9, 10-12, 10-21, 10-22, 11-11
for robust stability, 13-6, 13-31
Nyquist D contour, 10-4, 10-10
Nyquist plot, 10-4–10-5, 10-12, 10-13, 11-11, 12-10, 13-24
observability, 3-6, 8-1–8-2, 8-22, 8-26
rank condition, 8-3
tests for, 8-2–8-3
unobservable systems, 8-4, 8-22–8-24, 9-35
observability matrix, 8-3, 8-5
observable canonical form, 8-4, 8-5, 8-27
observer gain, 8-7, 8-9–8-11, 8-13, 8-15–8-17
observers, 8-1, 8-6–8-9, 8-17, 8-21
block diagram, 8-2, 8-10
zz, see also Kalman filter
ODEs, see differential equations
Ohm’s law, 3-39, 4-9, 9-6
on-off control, 1-17, 1-18
open loop, 1-1, 1-2, 4-8, 7-2, 9-18, 10-1, 11-14, 12-1, 12-10, 13-3
open loop gain, 9-7, 10-12, 12-8
operational amplifiers, 4-7–4-11, 9-6, 11-19, 13-10
circuits, 4-28, 6-24, 10-2, 13-14
dynamic model, 4-10, 9-6
input/output characteristics, 4-8
oscillator using, 4-28, 5-35
static model, 4-8, 9-6
optimal control, 7-25, 8-15, 8-17, 13-25
order, of a model, 3-9, 3-10
ordinary differential equations, see differential equations
oscillator dynamics, 4-28, 5-2, 5-3, 6-7, 6-8, 7-18, 9-5, 9-9
normal form, 3-41
zz, see also nanopositioner (AFM); spring-mass system
outer loop control, 12-31–12-33
output feedback, see also control; using estimated state; loop shaping; PID control, 8-11, 8-12, 8-26
output sensitivity function, see noise sensitivity function outputs, see measured signals
overdamped oscillator, 7-18
overshoot, 6-21, 7-10, 7-20, 12-8
P control, 2-8, 2-9
Padé approximation, 10-26, 12-23
paging control (computing), 3-34
parallel connection, 9-15
parametric stability diagram, 5-28–5-30
parametric uncertainty, 3-28, 13-1
particular solution, see also forced response, 2-2, 6-3, 6-22
non
uniqueness, 2-2
transfer function, 2-3
passive systems, 10-21, 12-26
passivity theorem, 10-22
patch clamp, 1-7
PD control, 2-23, 11-4, 12-14, 12-15
peak frequency, 6-26, 12-8
pendulum dynamics, see also inverted pendulum, 5-19
perfect adaptation, 11-5
performance, 4-12
performance limitations, 12-21, 12-26, 13-20, 13-27
due to right half-plane poles and zeros, 10-17
zz, see also control:
fundamental limitations
performance specifications, see also overshoot;
maximum sensitivity; resonant peak; rise time;
settling time, 6-21, 7-10, 12-1, 12-8–12-12, 12-14, 13-12
periodic solutions, see differential equations;
limit cycles
existence of a web connection, 4-12, 4-13
Petri net, 3-22
pharmacokinetics, see also drug administration, 4-21, 4-25
phase, see also minimum phase; nonminimum phase, 2-4, 3-21, 6-23, 6-24, 7-21, 9-2, 9-5, 9-23, 10-22
minimum vs. nonminimum, 10-17
phase crossover frequency, 10-13, 10-14
phase curve (Bode plot), 9-23–9-25, 9-27
relationship to gain curve, 10-16, 12-13
phase lag, 6-23, 6-24, 9-28, 10-17, 12-22, 12-24
phase lead, 6-23, 9-28, 12-17, 12-36
phase margin, 10-13, 10-14, 12-14, 12-15, 12-22, 12-37, 13-29
from Bode plot, 10-13
reasonable values, 10-15
phase portrait, 3-3, 5-4–5-6, 5-27
Philbrick, G. A., 4-11
photoreceptors, 11-5
physics, relationship to control, 1-5
PI Control, 2-8
PI controller, 1-12, 1-19, 2-9, 2-20, 4-1, 4-4, 11-4, 11-9, 12-14, 12-15
first-order system, 11-7, 13-18
PID control, 1-18–1-19, 11-1–11-23, 12-17
block diagram, 11-2, 11-4, 11-16
computer implementation, 11-21
ideal form, 11-1, 11-23
implementation, 11-4, 11-18–11-22
in biological systems, 11-5
op amp implementation, 11-19–11-21
tuning, 11-10–11-14
zz, see also derivative action; integral action
pitchfork bifurcation, 5-37
planar dynamical systems, see also second-order systems, 5-5, 5-10
pole excess, 12-18
pole placement, see also
INDEX

eigenvalue assignment, 7-11, 13-16, 13-19–13-20 robust, 13-15
pole zero diagram, 9-13 polezero cancellations, 9-20–9-22, 9-35, 13-20 poles, 2-4, 9-12, 9-13 dominant, see also dominant eigenvalues (poles), 11-9 fast stable, 13-18, 13-20 pure imaginary, 10-4, 10-10 relationship to eigenvalues, 9-12 right half-plane, 9-13, 10-10, 10-17, 12-21, 12-23–12-24, 12-26, 12-36, 13-20 population dynamics, see also predator-prey system, 4-25–4-27, 4-30 positive definite function, 5-18, 5-20, 5-24 positive definite matrix, 5-20, 7-25 positive feedback, 1-15–1-17, 2-17, 2-20, 5-36, 11-4 positive real (transfer function), 12-26 power of a matrix, 6-6 power systems (electric), 1-5–1-6, 3-41, 5-7, 5-34 predator-prey system, 3-13, 4-26–4-27, 5-28, 7-15 prediction, in controllers, see also derivative action, 1-18, 1-19, 8-21, 11-5, 13-29 prediction time, 11-5 principle of the argument, see variation of the argument, principle of process control, 1-6, 3-22 proportional (P) control, 2-8 proportional control, see also PID control, 1-18, 2-8, 11-1 proportional, integral, derivative control, see PID control proportional-derivative (PD) controller, 2-23 Proportional-Integral Control, 2-8 protocol, see congestion control; consensus control; consensus protocol, see also impulse function, 6-16, 6-17, 7-22 pupil response, 9-31, 11-5 Q-value, 3-41, 7-20, 9-26 quantitative feedback theory (QFT), 13-23–13-24 quarter car model, 9-36 queueing systems, 3-32–3-34, 3-42 random process, 3-32, 8-14, 8-15, 8-29 reachability, 3-6, 7-1–7-9, 7-32, 8-22 rank condition, 7-4 tests for, 7-3 unreachable systems, 7-5, 7-33, 8-22–8-24, 9-35 reachability matrix, 7-3, 7-8 reachable canonical form, 3-10, 7-6–7-9, 7-13, 7-14, 7-33 reachable set, 7-1 real-time systems, 1-5 reference signal, see also command signals; setpoint weighting, 1-17, 7-10, 9-1, 9-16, 11-1, 11-19, 12-3, 12-5 effect on observer error, 8-12, 8-19, 8-24 response to, 12-8, 12-9, 12-35 tracking, 7-10, 8-19, 8-20, 12-13, 13-14 reference weighting, see setpoint weighting region of attraction, see equilibrium points: regions of attraction regulation problem, 2-7 regulator, see control law relay feedback, 10-23, 11-13 Reno (protocol), see Internet; congestion control repressor, 3-38 repressor, 1-11, 3-38, 3-42, 5-21, 6-36, 9-29 reset logic, 3-8 reset, in PID control, 11-3, 11-4 resonant frequency, 7-20, 10-20 resonant peak, 6-26, 7-20, 12-8, 13-9 resource usage, in computing systems, 3-33, 3-35, 4-11, 4-12 response, see input/output models retina, see also pupil response, 11-5 Riccati equation, 7-25, 8-17, 13-26, 13-28 Riemann sphere, 13-5 right half-plane poles and zeros, see poles: right half-plane: zeros: right half-plane rise time, 6-21, 7-10, 7-20, 12-8 robotics, 1-7–1-8, 6-33 robustness, 1-10–1-12, 12-8, 13-3, 13-28 performance, 13-12–13-15, 13-22–13-28 stability, 13-6–13-12 using gain and phase margin, 10-15, 12-13 using maximum sensitivity, 12-10, 12-13, 13-7, 13-29, 13-31 using pole placement, 13-15–13-22 via gain and phase margin, 10-14 zz, see also uncertainty roll-off, see high-frequency roll-off root locus, 12-17, 12-18 asymptotes, 12-36 initial direction, 12-36 real line segment, 12-36 root locus diagram, 5-29, 5-30 root locus method, 12-18 Routh-Hurwitz criterion, 2-5, 5-37 Routh-Hurwitz stability criterion, 2-5 rush-hour effect, 3-33, 3-42
INDEX

step response, 3-4, 3-5, 3-25, 3-26, 6-5, 6-17, 6-20, 6-21, 7-10, 7-19, 7-20, 11-10
stochastic systems, 8-14, 8-17
summing junction, 3-23
superposition, 3-4, 6-3, 6-17, 6-34, 9-2
supervisory control, see decision making: higher levels of
supply chains, 1-9, 1-10
supremum (sup), 10-20
switching behavior, 1-16, 3-42, 5-23, 5-24, 13-28
system identification, 3-25, 3-41, 9-30
system inversion, 2-25
tapping mode, see atomic force microscope
TCP/IP, see Internet: congestion control
Teorell, T., 4-21, 4-25
three-term controllers, see also PID control, 11-1
thrust vectored aircraft, see vectored thrust aircraft
time constant, 2-2
time constant, first-order system, 6-35
time delay, 1-8, 9-7, 9-9, 10-15, 10-17, 11-10, 11-21, 12-23, 12-24
compensation for, 13-29, 13-30
Padé approximation, 10-26, 12-23
time plot, 3-3
time-invariant systems, 3-4, 3-9, 5-33, 6-4-6-5
TM, 2-25
tracking, see reference signal: tracking
tracking mode, 11-17
tail (bicycle dynamics), 4-6
transcription factors, 3-37
transcriptional regulation, see gene regulation
transfer function, 2-3
transfer functions, 9-1-9-4
common systems, 9-9
derivation using exponential signals, 9-3
for control systems, 9-16, 9-35
for electrical circuits, 9-6
for time delay, 9-7
frequency response, 9-2, 9-22
from experiments, 9-30
irrational, 9-8
linear input/output systems, 9-3, 9-9, 9-35
transfer functions: , 9-10
transfer functions: Laplace transforms, 9-10
transfer functions: impulse response, 9-10
transfer functions: state space model, 9-10
transient response, 3-19, 6-20, 6-21, 6-23, 7-2, 7-23
Transmission Control Protocol (TCP), 4-13
Tsien, H. S., 1-8
tuning rules, see Ziegler-Nichols tuning, 11-24
Tustin, A., 2-1
two degree-of-freedom control, 8-20, 11-2, 12-5, 12-7, 12-34, 12-35
two degrees of freedom, 2-13, 2-29
uncertainty, 1-4, 1-11-1-12, 3-6, 3-27-3-29, 7-30, 13-1-13-6
component or parameter variation, 1-4, 3-28, 13-1 disturbances and noise, 1-4,
3-6, 7-10, 9-16, 12-1
unmodeled dynamics, 1-4, 3-28, 13-2, 13-8
zz, see also additive uncertainty; feedback uncertainty; multiplicative uncertainty
uncertainty band, 3-28
uncertainty lemon, 3-28, 4-4, 4-10, 4-20
undamped natural frequency, 2-10
underdamped oscillator, 5-3, 7-19, 7-20
unit step, 6-20
unmodeled dynamics, see uncertainty: unmodeled dynamics, 2-10, 2-11
effect for control, 2-11
unstable pole, see poles: right half-plane
unstable pole/zero cancellation, 9-20
unstable solution, for a dynamical system, 5-9, 5-10, 5-13, 6-10, 9-13
unstable zero, see zeros: right half-plane
variation of the argument, principle of, 10-11, 10-24
vector field, 3-3, 5-5
vectored thrust aircraft, 3-30-3-31, 6-11, 7-26, 8-17, 9-35, 12-16, 12-30
vehicle steering, 3-29-3-30, 6-30, 7-11, 8-9, 8-13, 8-21, 9-18, 10-18, 10-25, 12-7, 13-16
ship dynamics, 3-29
vehicle suspension, see also coupled spring-mass system, 9-36
vertical takeoff and landing, see vectored thrust aircraft vibration absorber, 9-37
Vinnicombe, G., 12-34, 13-5, 13-6, 13-28
Vinnicombe metric, 13-3-13-6, 13-26
voltage clamp, 1-7, 3-39
waterbed effect, 12-26, 12-27
Watt governor, see centrifugal governor
Watt steam engine, 1-3, 1-11
web server control, 4-11-4-13, 7-27
web site, companion, x
Whipple, F. J. W., 4-7
Wiener, N., 1-7
winding number, 10-11
window size (TCP), 4-14, 4-16, 5-10
windup, see integrator windup
Wright, W., 1-13
Wright Flyer, 1-6, 1-13
X-29 aircraft, 12-27
Youla parameterization, 13-10–13-12
zero blocking property, 2-4

zero frequency gain, 2-4, 6-25, 7-11, 7-14, 7-20, 9-11, 9-12
zeros, 2-4, 9-12
Bode plot for, 9-35
effect of sensors and actuators on, 10-18, 12-24
for a state space system, 9-12
right half-plane, 9-13, 10-17, 12-21–12-24.

12-27, 12-36, 13-20
signal-blocking property, 9-12
slow stable, 13-16, 13-18, 13-20
Ziegler, J. G., 11-10, 11-23
Ziegler-Nichols tuning, 11-10–11-13, 11-23
frequency response, 11-10
improved method, 11-11
step response, 11-10