Goals:

- Introduce two degree of freedom design for motion control systems
- Describe how to use flatness for real-time motion planning using NTG
- Give examples of implementation on Caltech ducted fan, satellite formations

Reading:

Real-Time Trajectory Generation Using Flatness

Nonlinear design
- global nonlinearities
- input saturation
- state space constraints

Linear design

![Diagram](image)

Approach: Two Degree of Freedom Design
- Use online trajectory generation to construct feasible trajectories
- Use linear control for local performance
- For many systems, dynamics are differentially flat \(\Rightarrow\) reduce dynamic system to algebraic equivalent and generate feasible trajectories in real time

Rapid Transition from Hover to Forward Flight

Caltech Ducted Fan

Real-Time Trajectory Generation

CDS 270-2, 10 Apr 06

R. M. Murray, Caltech CDS
Trajectory Generation Using Differential Flatness

\[\mathcal{X} = f(x, u) \]
\[z = h(x, u, \mathcal{G}K, u^{(p)}) \]
\[|u| < L \]

\[x = x(z, \mathcal{G}K, z^{(q)}) \]
\[u = u(z, \mathcal{G}K, z^{(q)}) \]

Complicated (algebraic) constraints

\[\bar{z}_0 = \begin{bmatrix} z(0) \\ \mathcal{G}(0) \\ \mathcal{G}T(0) \\ M \\ z^{(q)}(0) \end{bmatrix}, \quad z \sim \bar{z}_f = \begin{bmatrix} z(T) \\ \mathcal{G}(T) \\ \mathcal{G}T(T) \\ M \\ z^{(q)}(T) \end{bmatrix} \]

\[z = \sum \alpha_i \psi^i(t) \]
\[M\alpha = \begin{bmatrix} \bar{z}_0 \\ \bar{z}_f \end{bmatrix} \]

- Use basis functions to parameterize output \(\Rightarrow \) linear problem in terms of coefficients
Optimal Control Using Differential Flatness

Can also solve constrained optimization problem via flatness

\[
\min J = \int_{t_0}^{T} L(x, u) \, dt + V(x(T), u(T))
\]

subject to

\[
\dot{x} = f(x, u) \quad g(x, u) \leq 0
\]

• Input constraints
• State constraints

If system is flat, once again we get an \textit{algebraic} problem:

\[
x = x(z, \mathcal{K}^{(q)}, z^{(q)})
\]
\[
u = u(z, \mathcal{K}^{(q)}, z^{(q)})
\]
\[
z = \sum \alpha_i \psi^i(t)
\]

\[
\min J = \int_{t_0}^{T} L(\alpha, t) \, dt + V(\alpha)
\]

\[
g(\alpha, t) \leq 0
\]

Finite parameter \textit{optimization} problem

• Constraints hold at all times \(\Rightarrow\) potentially over-constrained optimization
• Numerically solve by discretizing time (collocation)
NTG: Nonlinear Trajectory Generation

Flatness-based optimal control package
• B-spline representation of (partially) flat outputs
• Collocation based optimization approach
• Built on NPSOL optimization pkg (requires license)
• Warm start capability for receding horizon control

Solves general nonlinear optimization problem
\[
\min J = \int_{t_0}^{T} q(x, u) \, dt + V(x(T), u(T)) \\
\dot{x} = f(x, u) \quad lb \leq g(x, u) \leq ub
\]

• Assumes \(x \) and \(u \) are given in terms of (partially) flat outputs
• Constraints are enforced at a user-specified set of collocation points
• Gives *approximate* solution; need to use w/ feedback to ensure robustness (2 DOF)

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
Trajectory Generation Using Splines for Flat Outputs

Rewrite flat outputs in terms of splines

$$z_j = \sum_{i=1}^{p_j} B_{i,k_j}(t) C_i^j$$ for the knot sequence t_j

$$p_j = l_j(k_j - m_j) + m_j$$

Evaluate constrained optimization at collocation points:

$$\min_{\tilde{C} \in \mathbb{R}^M} J(\tilde{z}(t_i)) \quad \text{subject to} \quad lb \leq c(\tilde{z}(t_i)) \leq ub$$

$B_{i,k_j} =$ basis functions
$C_i^j =$ coefficients
$z_i =$ flat outputs
Application: Caltech Ducted Fan

Flight Dynamics

\[m \ddot{x} = -D \cos \gamma - L \sin \gamma + F_{Xb} \cos \theta + F_{Zb} \sin \theta \]
\[m \ddot{z} = D \sin \gamma - L \cos \gamma - m g_{eff} + F_{Xb} \sin \theta + F_{Zb} \cos \theta \]
\[J \ddot{\theta} = M_a - \frac{1}{r_s} I \Omega \dot{x} \cos \theta + M_T \]

\[\alpha = \theta - \gamma, \quad \text{angle of attack} \]
\[\gamma = \tan^{-1} \frac{\dot{z}}{x}, \quad \text{flight path angle} \]

Trajectory Generation Implementation

- System is approximately flat, even with aerodynamic forces
- More efficient to over-parameterize the outputs; use \(z = (x, y, \theta) \)
- Input constraints: max thrust, flap limits, flap rates

\[L = \frac{1}{2} \rho V^2 S C_L (\alpha) \]
\[D = \frac{1}{2} \rho V^2 S C_D (\alpha) \]
\[M_a = \frac{1}{2} c \rho V^2 S C_M (\alpha) \]
Implementation using NTG Software Library

Features
• Handles constraints
• Very fast (real-time), especially from warm start
• Good convergence

Weaknesses
• No convergence proofs
• Misses constraints between collocation points
• Doesn’t exploit mechanical structure (except through flatness)

http://www.cds.caltech.edu/~murray/software/2002a_ntg.html
Example 1: Trajectory Generation for the Ducted Fan

Caltech Ducted Fan
- Ducted fan engine with vectored thrust
- Airfoil to provide lift in forward flight mode
- Design to emulate longitudinal flight dynamics
- Control via dSpace-based real-time controller

Trajectory Generation Task: point to point motion avoiding obstacles
- Use differential flatness to represent trajectories satisfying dynamics
- Use B-splines to parameterize trajectories
- Solve \textit{constrained} optimization to avoid obstacles, satisfy thrust limits
NTG Convergence Properties

Numerical Studies using Caltech Ducted Fan

- 6461 test cases
- 500 initial guess for spline coefficients
- Total of > 3M runs

- Count # of cases that converge for given # of initial guesses

- Comparison between quasi-collocation (x, y, θ) and full collocation (states and inputs)
Trajectory Generation for Non-Flat Systems

If system is not fully flat, can still apply NTG

\[\mathcal{S} = f(x, u) \]

\[z = z(x, u, \mathcal{S}, u^{(q)}) \]

\[x = x(z, \mathcal{S}, z^{(q)}) \]

\[u = u(z, \mathcal{S}, z^{(q)}) \]

\[y = h(x, u) \]

\[(x, u) = \Gamma(y, \mathcal{S}, y^{(q)}) \]

\[0 = \Phi(y, \mathcal{S}, y^{(p)}) \]

When system is not flat, use quasi-collocation

- Choose output \(y = h(x, u) \) that can be used to compute the full state and input
- Remaining dynamics are treated as constraints for trajectory generation
- Example: chain of integrators

\[\mathcal{S}_1 = x_2 \]
\[\mathcal{S}_2 = u \]
\[y_1 = x_1 \]
\[y_2 = x_2 \]
\[x_1 = y_1 \]
\[x_2 = y_2 \]
\[u = \mathcal{S}_2 \]

\[\{ \text{Solve using NTG with } lb = ub \} \]

Can also do full collocation (treat all dynamics as constraints)

\[(x, u) = \sum \alpha_i \psi_i(t) \]
\[\mathcal{S}(t_i) = f(x(t_i), u(t_i)) \]

Each equation gives constraints at collocation points \(\Rightarrow \) highly constrained optimization
Effect of Defect on Computation Time

Defect as a measure of flatness
- Defect = number of remaining differential equations
- Defect 0 \Rightarrow differentially flat

Sample problem: 5 states, 1 input
- x_1 is possible flat output
- Can choose other outputs to get systems with nonzero defect
- 200 runs per case, with random initial guess

Computation time related to defect through power law
- SQP scales cubically \Rightarrow minimize the number of free variables

\[
\begin{align*}
\dot{x}_1 &= 5x_2 \\
\dot{x}_2 &= \sin x_1 + x_2^2 + 5x_3 \\
\dot{x}_3 &= -x_1x_2 + x_3 + 5x_4 \\
\dot{x}_4 &= x_1x_2x_3 + x_2x_3 + x_4 + 5x_5 \\
\dot{x}_5 &= -x_5 + u
\end{align*}
\]

Dramatic speedup through reduction of differential constraints

Petit, Milam, Murray
NOLCOS, 2001
Example 2: Satellite Formation Control

Goal: reconfigure cluster of satellites using minimum fuel

Reconfiguration Stationkeeping Deconfiguration

Dynamics given by Hill’s equations (fully actuated \Rightarrow flat)

\[
\begin{align*}
\ddot{q}_1 &= \frac{\mu q_1}{|q|^3} - \frac{3J_2 \mu R_e^2 q_1 \left(q_1^2 + q_2^2 - 4q_3^2\right)}{2|q|^7} + u_1^I \\
\ddot{q}_2 &= \frac{\mu q_2}{|q|^3} - \frac{3J_2 \mu R_e^2 q_2 \left(q_1^2 + q_2^2 - 4q_3^2\right)}{2|q|^7} + u_2^I \\
\ddot{q}_3 &= \frac{\mu q_3}{|q|^3} - \frac{3J_2 \mu R_e^2 q_3 \left(3q_1^2 + 3q_2^2 - 2q_3^2\right)}{2|q|^7} + u_3^I
\end{align*}
\]
Satellite Formation Results

Station-keeping optimization

- Maintain a given area between the satellites (for good imaging) while minimizing the amount of fuel
- Idea: exploit natural dynamics of orbital equations as much as possible
- Input constraints: $\Delta V < 20 \text{ m/s/year}$

Results

- Use NTG to optimize over 60 orbits (~3 days), then repeat
- Results: at 45° inclination, obtain 10.4 m/s/year

<table>
<thead>
<tr>
<th>i (deg)</th>
<th>S (m2)</th>
<th>ΔV (m/s/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>25.6</td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>47.8</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Projected area of satellites

100 m2
Example 3: MVWT Control Design

Control design technique

1. LQR design of state space controller K around reference velocity
2. Choose P, Q, R using Kalman’s formula
3. Implement as a receding horizon control with input and state space constraints

- RHC controller respects state space constraint

\[
\begin{align*}
m \ddot{\xi} &= -\eta \ddot{\xi} + (F_s + F_p) \cos \theta \\
m \ddot{\eta} &= -\eta \ddot{\eta} + (F_s + F_p) \sin \theta \\
J \ddot{\theta} &= -\psi \ddot{\theta} + (F_s - F_p) r_j
\end{align*}
\]
Summary: Real-Time Trajectory Generation

Flatness is a key property for efficient motion planning
- Allows conversion of dynamics into algebra ⇒ much faster algorithms

NTG software package implements required calculations
- Allows solution of general constrained optimization, w/ parameterized outputs
- Gives approximate results ⇒ need to use in feedback context (not open loop)

Growing collection of applications
- Caltech ducted fan, satellite formation control
- Underwater vehicles, wheeled mobile robots, RoboFlag, Alice, …

\[
\min J = \int_{t_0}^{T} q(x, u) \, dt + V(x(T), u(T)) \\
\dot{x} = f(x, u) \quad lb \leq g(x, u) \leq ub
\]
Homework and Project Ideas

Homework
• Download NTG and implement the point to point motion control problem for Alice or a RoboFlag vehicle.

Project ideas:
• For multi-vehicle applications, need to distribute the computation across multiple computers
• Use spread to implement a distributed trajectory generation capability