1. Consider the matrix
\[A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \]
(a) Find the generalized eigenspaces for each eigenvalue of \(A \).
(b) Compute the exponential \(e^{tA} \).
(c) Solve the differential equations
\[\begin{align*}
\dot{x} &= y \\
\dot{y} &= -x \\
\dot{z} &= 2z
\end{align*} \]
with the initial conditions \(x(0) = 1, y(0) = 0, z(0) = 2 \).

2. Suppose that the real \(n \times n \) matrix \(A \) satisfies \(A - A^T = B \), where \(A^T \) denotes the transpose of \(A \) and where \(B \) commutes with \(A \); that is, \(AB = BA \). Is \(A \) diagonalizable?

3. Is the solution \((0, 0)\) of the system of equations
\[\begin{align*}
x + 3y + x^4 - y^4 &= 0 \\
y + x^3 - y^3 &= 0
\end{align*} \]
isolated? Prove or give a counterexample.

4. (a) Show that the following defines a norm on the space of \(n \times n \) real matrices:
\[\| A \|^2 = \text{trace}(A A^T) \]
(b) Let \(R \) be a (given fixed) real orthogonal matrix and \(S \) a (given fixed) real symmetric matrix. Show that there is a unique real symmetric matrix \(B \) such that
\[\frac{1}{2} R^T B R - S = B. \]