Reverse and Forward Engineering of Frequency Control in Power Networks

Seungil You Lijun Chen

Abstract—We reverse-engineer the frequency dynamics with general primary frequency control and show that it is a distributed algorithm to solve a well-defined optimization problem. We further investigate the role of deadband in control, and show that if the aggregated uncontrolled load deviation is nonzero the frequencies will be synchronized, and if however it is zero the frequencies may oscillate but within the deadband. The optimization model does not only provide a way to characterize the equilibrium and establish the convergence of the frequency dynamics, but also suggests a principled way to engineer frequency control. By leveraging the optimization problem and insights from reverse engineering, we propose a distributed realtime frequency control scheme that does not only maintain the frequency to the nominal value but also achieves economic efficiency. This is drastically different from the current hierarchical control approach that addresses frequency regulation and economic efficiency at different timescales and with centralized control, and is what is needed for future power system to cope with rapid and large fluctuations in supply/demand and manage a huge number of control points. This work presents a step towards developing a new foundation – network dynamics as optimization algorithms – for distributed realtime control and optimization of future power networks.

I. INTRODUCTION

The goal of frequency control is to balance power supply and demand to synchronize the frequency and maintain it to the nominal value. Traditionally, frequency control has a hierarchical structure that spans multiple timescales: primary control at subseconds to seconds, secondary control at seconds to minutes, and economic dispatch at minutes to hours; see, e.g., [23], [20]. Control at slow timescales (economic dispatch) is centralized and calculates set-points for the fast timescale control to track. Here economic efficiency is key, and the control is based on optimization models such as the optimal power flow (OPF) problem. On the other hand, control at fast timescales (primary and secondary control) is local and automatic, usually oblivious of the global perspective such as economic efficiency. Here stability is key, and the design is based on dynamical models such as the swing equation. Such a control paradigm works well for today’s system with relatively low uncertainty and relatively small number of control points.

However, the current control paradigm may be inadequate for future power system. The future system expects to have rapid and large fluctuations in power supply/demand because of high penetration of renewable generation from solar and wind and active participation of end users. This implies that economic efficiency can not be ignored any more at fast timescales, and the fast timescale control needs to be bridged with systemwide properties such as economic efficiency. Moreover, the future system may consist of a huge number of control points, which implies that the control must be distributed and based on local information. It is however challenging to achieve systemwide properties through local controls/decisions for a large interconnected system such as the power network.

We aim to find a principled way to guide systematic design of local controls with global perspective for frequency control. The approach we take is reverse and forward engineering. We first develop models to understand the systemwide properties arising from the interaction among local controls, in particular, whether the power system dynamics with the existing controls can be interpreted as distributed algorithm for solving certain optimization problem, i.e., network dynamics as optimization algorithms. We then leverage the insights obtained from reverse engineering to engineer the optimization model to incorporate the desired objectives and proper constraints, and design distributed control scheme according to distributed algorithm for solving the resulting optimization problem.

Specifically, we first reverse-engineer the frequency dynamics with primary frequency control with general control functions, by showing that it is a partial primal-dual gradient algorithm to solve a well-defined optimization problem. We further investigate the role of deadband in control, and show that if the aggregated uncontrolled load deviation is nonzero the frequencies will be synchronized, and if however it is zero the frequencies may oscillate but within the deadband. The optimization model does not only provide a way to characterize the equilibrium and establish the convergence of the frequency dynamics, but also suggests a principled way to engineer frequency control. Based on the insights from reverse engineering, we then impose additionally a set of constraints to the optimization problem to design a distributed realtime frequency control scheme that does not only maintain the frequency to the nominal value but also achieves economic efficiency. This is drastically different from the current hierarchical control approach that addresses frequency regulation and economic efficiency at different timescales and with centralized control, and is what is needed for future power system to cope with rapid and large fluctuations in supply/demand and manage a huge number of control points.

The similar idea of reverse and forward engineering was first proposed to understand the dynamic behaviors of existing network protocols and guide systematic design of better or new ones in communication network; see, e.g., [15], [19], [18], [10], [9]. This line of work has led to the development of a promising mathematical theory for communication network architecture and protocol design – layering as optimization decomposition; see, e.g., [13], [10], [8], [6]. The layering as optimization decomposition framework views various protocol layers as carrying out
asynchronous distributed computation over the network to optimize a global objective function. Different layers iterate on different subsets of the decision variables using local information to achieve individual optimality. Taken together, these local algorithms attempt to achieve a global objective. We aim to develop a similar framework – network dynamics as optimization algorithms – for distributed realtime control and optimization of power network. There are, however, fundamental differences between power and communication networks, in particular, the control and operation of power network cannot be decoupled from the physics of electricity while the control and management of communication network can be decoupled from the underlying physics of information. This requires designing distributed optimization algorithms that exploit or can be implemented as power system dynamics.

There is an extensive literature on frequency control. We only review those few that are most relevant. In particular, this paper was originally motivated by [27], [26] that proposes load side primary frequency control based on a partial primal-dual gradient algorithm for a cost minimization problem. Related work also includes [17] that reverse-engineers automatic generation control and proposes a modified control scheme to achieve economic efficiency, and [21] that proposes a distributed frequency-preserving optimal load control. The main differences from [27], [26], [17], [21] are that we lay out a general framework for reverse-engineering frequency dynamics with general primary frequency control, characterize the role of deadband in control, and leverage primary frequency control to design a distributed realtime control scheme that maintains the frequency to nominal value while achieves economic efficiency. Other work that takes a similar approach or in a similar flavor includes [25] that uses a primal-dual decomposition approach to design a dynamic feedback controller for power network, and [12] that proposes a distributed control architecture for frequency regulation and economic efficiency for microgrids.

II. System Model

Consider a power network modeled by a connected graph \((\mathcal{N}, \mathcal{E})\), with a set \(\mathcal{N}\) of buses or control areas and a set \(\mathcal{E}\) of power lines connecting the buses. We assume that the power network is initially at a steady state (or equilibrium) at the nominal frequency \(\omega^0\) and with bus \(i \in \mathcal{N}\) voltage magnitude \(v_i\) and nominal phase angle \(\theta^0_i\). All the variables introduced in the following will be deviations or revisions with respect to this steady state.

For each bus \(i \in \mathcal{N}\), let \(\omega_i\) denote the frequency deviation, \(P_i^U\) the uncontrolled load deviation, and \(P_i^S\) the frequency-sensitive load deviation. \(P_i^S\) can be modeled by

\[
P_i^S = G_i(\omega_i),
\]

where the frequency response function \(G_i\) is Lipschitz continuous, strictly increasing, and with \(G_i(0) = 0\). A linear approximation \(G_i(\omega_i) \approx D_i \omega_i, D_i > 0\) is usually used in literature, but we do not make such an assumption.\(^1\)

We denote by \(\mathcal{N}^M\) and \(\mathcal{N}^R\) the subsets of buses at which there is a synchronous mechanical generator and renewable generation respectively, and \(\mathcal{N}^L\) the subset of buses that only have loads. For simplicity of presentation, we assume that \(\mathcal{N}^M \cap \mathcal{N}^R = \emptyset\), but the results in this paper hold even when \(\mathcal{N}^M\) and \(\mathcal{N}^R\) overlap. We will first consider primary frequency control. For each bus \(i \in \mathcal{N}^M\), let \(P_i^M\) denote the mechanical power revision that is controlled by certain primary frequency control scheme with a deadband of \(\delta_i > 0\)

\[
P_i^M = F_i(\omega_i),
\]

where the control function \(F_i\) is Lipschitz continuous, strictly decreasing in \((-\infty, -\delta_i/2) \cup (\delta_i/2, \infty)\), and zero in \([-\delta_i/2, \delta_i/2]\), and can be more general than the usual droop control

\[
F_i(\omega_i) = \begin{cases}
-S_i(\omega_i - \frac{\delta_i}{2}), & \omega_i \geq \frac{\delta_i}{2} \\
0, & |\omega_i| < \frac{\delta_i}{2} \\
-S_i(\omega_i + \frac{\delta_i}{2}), & \omega_i \leq -\frac{\delta_i}{2}
\end{cases}
\]

with \(S_i > 0\). For each bus \(i \in \mathcal{N}^R\), let \(P_i^R\) denote the renewable power deviation that is controlled by certain primary frequency control scheme with a deadband of \(\delta_i \geq 0\)

\[
P_i^R = H_i(\omega_i),
\]

where the control function \(H_i\) is Lipschitz continuous, strictly decreasing in \((-\infty, -\delta_i/2) \cup (\delta_i/2, \infty)\), and zero in \([-\delta_i/2, \delta_i/2]\). Such frequency regulation services by the renewable generation have been recommended or mandated in certain countries, see, e.g., [1], [2], and are an active research area, see, e.g., [22], [11], [7], [5].

For each link \((i, j) \in \mathcal{E}\), let \(P_{ij}\) denote the real power flow from bus \(i\) to bus \(j\). Under the DC power flow approximation [3], the dynamics of branch flow can be written as

\[
\dot{P}_{ij} = B_{ij}(\omega_i - \omega_j),
\]

where \(B_{ij} = \frac{v_i v_j}{x_{ij}} \cos(\theta^0_i - \theta^0_j)\) with \(x_{ij}\) the reactance of power line \((i, j)\). The frequency dynamics is given by

\[
M_i \ddot{\omega}_i = F_i(\omega_i) - G_i(\omega_i) - P_i^U - \sum_{(j, i) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^M, \tag{5}
\]

\[
H_i(\omega_i) = G_i(\omega_i) + P_i^I + \sum_{(j, i) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^R, \tag{6}
\]

\[
0 = G_i(\omega_i) + P_i^I + \sum_{(j, i) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^L, \tag{7}
\]

where \(M_i\) is the generator inertia. Equation (5) is the swing equation for a synchronous generator and equations (6)-(7) are algebra equations from power balance.

In the next section, we will take a new perspective to understand the frequency dynamics (4)-(7) by showing that it can be seen as a distributed algorithm for solving a well-defined DC OPF problem (reverse engineering). In the section next, we will show how to leverage the optimization model and insights from reverse engineering to design new frequency control scheme (forward engineering).

III. Reverse Engineering

A. Frequency dynamics as primal-dual gradient algorithm

Equations (1)-(3) define a relation between the load or generation deviation and the frequency deviation. Define a

\(^1\)We may impose upper/lower bounds to \(P_i^S\) as well as to \(P_i^M\) and \(P_i^R\) introduced later. But this will not change the results of this paper.
disutility or cost function for the frequency-sensitive load

\[C_i^S(P_i^S) = \int_0^{P_i^S} G_i^{-1}(P_i) dP_i, \quad i \in \mathcal{N}, \quad (8) \]

ea cost function for mechanical power control

\[C_i^M(P_i^M) = -\int_0^{P_i^M} F_i^{-1}(P_i) dP_i, \quad i \in \mathcal{N}^M, \quad (9) \]

and a cost function for renewable power control

\[C_i^R(P_i^R) = -\int_0^{P_i^R} H_i^{-1}(P_i) dP_i, \quad i \in \mathcal{N}^R. \quad (10) \]

Functions \(C_i^S(\cdot) \), \(C_i^M(\cdot) \), and \(C_i^R(\cdot) \) are all continuous and strictly convex, but \(C_i^M(\cdot) \) and \(C_i^R(\cdot) \) may not be differentiable at the origin in the presence of the deadband. These functions depend only on the control functions and are independent of how the feedback signal \(\omega_i \) is updated. They characterize certain "inherent" characteristics of load response or generation control, such as the economic cost incurred or the willingness/activeness in control. A main motivation for defining the cost function, take \(C_i^M(\cdot) \) as an example, is to establish the equivalence between the control algorithm (2) and the distributed decision:

\[P_i^M = \arg \min_{P_i^M} \quad C_i^M(P_i^M) + P_i^R(\omega_i) \quad (11) \]

for given frequency deviation \(\omega_i \).

With the above cost functions, we can define a cost minimization problem for frequency control subject to the power balance:

\[
\begin{align*}
\min_{P^S, P^M, P^R, P}
& \sum_{i \in \mathcal{N}} C_i^S(P_i^S) + \sum_{i \in \mathcal{N}^M} C_i^M(P_i^M) + \sum_{i \in \mathcal{N}^R} C_i^R(P_i^R) \\
\text{subject to}
& P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} = P_i, \quad i \in \mathcal{N}^M, \quad (13) \\
& P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} = P_i^R, \quad i \in \mathcal{N}^R, \quad (14) \\
& P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} = 0, \quad i \in \mathcal{N}^L, \quad (15)
\end{align*}
\]

where \(P^S = \{P_i^S; i \in \mathcal{N}\} \), \(P^M = \{P_i^M; i \in \mathcal{N}^M\} \), \(P^R = \{P_i^R; i \in \mathcal{N}^R\} \), and \(\mathcal{P} = \{P_{ij}; (i,j) \in \mathcal{E}\} \). The above convex optimization problem is actually a DC optimal power flow problem. Obviously, Slater’s condition holds [4], i.e., there exists a feasible point for problem (12)-(15).

Introduce Lagrangian multiplier \(\lambda_i \) for each constraint of (13)-(15), and consider the Lagrangian

\[
L(P^S, P^M, P^R, P; \lambda) = \sum_{i \in \mathcal{N}} C_i^S(P_i^S) + \sum_{i \in \mathcal{N}^M} C_i^M(P_i^M) + \sum_{i \in \mathcal{N}^R} C_i^R(P_i^R) \\
- \sum_{i \in \mathcal{N}^M} \lambda_i(P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} - P_i) \\
- \sum_{i \in \mathcal{N}^R} \lambda_i(P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} - P_i^R) \\
- \sum_{i \in \mathcal{N}^L} \lambda_i(P_i^S + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij}), \quad (16)
\]

where \(\lambda = \{\lambda_i; i \in \mathcal{N}\} \). As Slater’s condition holds, there exists a saddle point of \(L \). Notice that a saddle point of \(L \) is a primal-dual optimum of problem (12)-(15) and its dual.

Define a reduced Lagrangian:

\[
\hat{L}(P; \lambda) = \max_{\lambda^R, \lambda^L} \min_{P^S, P^M, P^R} L(P^S, P^M, P^R, P; \lambda), \quad (17)
\]

where \(\lambda^M = \{\lambda_i; i \in \mathcal{N}^M\} \), \(\lambda^R = \{\lambda_i; i \in \mathcal{N}^R\} \), and \(\lambda^L = \{\lambda_i; i \in \mathcal{N}^L\} \), i.e., the dual variables corresponding the constraints (13), (14), and (15) respectively. We will study the saddle point dynamics for the reduced Lagrangian \(L \), which gives a partial primal-dual gradient algorithm for problem (12)-(15) and its dual.

Theorem 1: The frequency dynamics (4)-(7) is a partial primal-dual gradient algorithm to solve problem (12)-(15) and its dual. Moreover, the set of saddle points of the Lagrangian \(L \) is the set of equilibria of dynamical system (4)-(7).

Proof: For the inner minimization in (17), we have the first order optimality condition

\[
\begin{align*}
\partial_{P_i^S} C_i^S &= \lambda_i, \quad i \in \mathcal{N}, \\
\partial_{P_i^M} C_i^M &= -\lambda_i, \quad i \in \mathcal{N}^M, \\
\partial_{P_i^R} C_i^R &= -\lambda_i, \quad i \in \mathcal{N}^R,
\end{align*}
\]

which, by the definition (8)-(10) of the cost functions, gives

\[
\begin{align*}
P_i^S &= G_i(\lambda_i), \quad i \in \mathcal{N}, \\
P_i^M &= F_i(\lambda_i), \quad i \in \mathcal{N}^M, \\
P_i^R &= H_i(\lambda_i), \quad i \in \mathcal{N}^R.
\end{align*}
\]

Let \(\hat{L}(P; \lambda) = \min_{P^S, P^M, P^R} L(P^S, P^M, P^R, P; \lambda) \), which is concave by definition and continuously differentiable with respect to \(\lambda \) due to strict convexity of the cost function; see Proposition 6.1.1 in [4]. Thus, for the outer maximization in (17), we have first order optimality condition

\[
\partial_{\lambda_i} \hat{L}(P; \lambda) = 0, \quad i \in \mathcal{N}^R \cup \mathcal{N}^L,
\]

which gives

\[
\begin{align*}
G_i(\lambda_i) + P_i^S + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} - H_i(\lambda_i) &= 0, \quad i \in \mathcal{N}^R, \\
G_i(\lambda_i) + P_i^M + \sum_{\{j: (i,j) \in \mathcal{E}\}} P_{ij} &= 0, \quad i \in \mathcal{N}^L.
\end{align*}
\]

2In reverse engineering, we define cost functions for given control functions. In forward engineering (Section IV), we can derive control functions for given cost functions, by "inverting" equations (8)-(10).

3The equivalence holds even if \(\omega_i \) falls inside the deadband, i.e., \(|\omega_i| < \delta_i/2 \). Under this situation, the set of subgradients of \(C_i^M(P_i) + P_i \omega_i \) at \(P_i = 0 \) contains 0, which is exactly the optimality condition at \(P_i = 0 \), and hence \(P_i^M = 0 \).
Apply the saddle point dynamics to the reduced Lagrangian $\hat{L}(P; \lambda_M)$, we have

$$\dot{P}_{ij} = -\epsilon_{ij} \frac{\partial \hat{L}}{\partial P_{ij}} = \epsilon_{ij}(\lambda_i - \lambda_j),\ (i,j) \in \mathcal{E},$$

(20)

$$\dot{\lambda}_i = \kappa_i \frac{\partial \hat{L}}{\partial \lambda_i} = \kappa_i(F_i(\lambda_i) - G_i(\lambda_i) - P^I_i - \sum_{\{j:(i,j) \in \mathcal{E}\}} P_{ij}),$$

(21)

where $\epsilon_{ij} > 0$ and $\kappa_i > 0$. Again, \dot{L} is differentiable with respect to λ_i, $i \in \mathcal{N}^M$ due to the strict convexity of the cost function. Equations (18)-(21) are the dynamical equations (4)-(7) if identifying $\lambda_i = \omega_i$ and setting $\epsilon_{ij} = B_{ij}$ and $\kappa_i = \frac{1}{P_i}$. The second half of the theorem follows from the KKT condition for the saddle point [4].

Theorem 1 only says that the frequency dynamics (4)-(7) is a partial primal-dual gradient algorithm for problem (12)-(15) and its dual, but does not guarantee the convergence to a saddle point, which we discuss next.

B. Saddle points and convergence of frequency dynamics

We first characterize the saddle point of the Lagrangian L, i.e., the equilibrium of the frequency dynamics (4)-(7).

Proposition 2: Let S be the set of saddle points of the Lagrangian L. If $(P^S, F^S, P^R, \lambda^S) \in S$, then

$$\lambda_i = \omega, \ i \in \mathcal{N},$$

(22)

$$F_i(\lambda_i) = G_i(\lambda_i) + P^I_i + \sum_{\{j:(i,j) \in \mathcal{E}\}} P_{ij}, \ i \in \mathcal{N}^M,$$

(23)

$$H_i(\lambda_i) = G_i(\lambda_i) + P^I_i + \sum_{\{j:(i,j) \in \mathcal{E}\}} P_{ij}, \ i \in \mathcal{N}^R,$$

(24)

$$0 = G_i(\lambda_i) + P^I_i + \sum_{\{j:(i,j) \in \mathcal{E}\}} P_{ij}, \ i \in \mathcal{N}^L,$$

(25)

where ω is a certain constant.

Proof: The result follows from the KKT condition for the saddle point. In particular, $\lambda_i = \lambda_j$, $\forall (i,j) \in \mathcal{E}$, which leads to (22). ■

If the frequency dynamics converges to a saddle point, then the frequencies are synchronized and the supply and demand are balanced. But, in general, we cannot guarantee the convergence, rather the dynamics converges to a compact subset of an invariant set I; see Appendix. The set I is not necessarily contained in the set S of saddle points, nor is a singleton set which gives stability immediately. If however the synchronized frequency ω is uniquely determined, then I is contained in S and the frequency dynamics converges.

Theorem 3: Suppose that ω in equation (22) is uniquely determined. Then the frequency dynamics (4)-(7) converges to a saddle point of Lagrangian L.

Proof: The result follows from Proposition 13. ■

A typical way to verify the uniqueness of ω is to check the strict concavity of the reduced Lagrangian $\hat{L}(P; \lambda)$ in terms of λ, which may not hold or may be difficult to check. An easy way is to exploit the power balance.

Theorem 4: The frequency dynamics (4)-(7) converges to a saddle point of Lagrangian L.

Proof: From the saddle point equations (22)-(25), we have the aggregate power balance:

$$\sum_{i \in \mathcal{N}} P^I_i = -\sum_{i \in \mathcal{N}} G_i(\omega) + \sum_{i \in \mathcal{N}^M} F_i(\omega) + \sum_{i \in \mathcal{N}^R} H_i(\omega).$$

By the assumptions on functions G_i, F_i, H_i, the right hand side of the above equation is strictly decreasing. So, it has a unique solution. The result follows from Theorem 3. ■

Notice that we have assumed that there is frequency sensitive load at each bus. But this is not necessary for frequency synchronization. Indeed, from the proof of Theorem 4, frequency sensitive load at only one bus is enough for synchronization.

C. The impact of deadband

From the above discussion, it seems that the deadband in control does not bring any complication to frequency synchronization. This is because of the existence of frequency sensitive load, which ensures the uniqueness of ω, i.e., the synchronized frequency if the system converges. In order to study the impact of deadband, in this subsection we assume that there is no frequency sensitive load and there is a deadband in control, i.e., $\delta_i > 0$, for all $i \in \mathcal{N}^M \cup \mathcal{N}^R$.

Corollary 5: If the aggregate uncontrolled load deviation is nonzero, i.e., $\sum_{i \in \mathcal{N}} P^I_i \neq 0$. Then the frequency dynamics (4)-(7) converges to a saddle point of Lagrangian L in the presence of deadband in control.

Proof: Let $\delta_m = \min_i \delta_i$. Notice that $\sum_{i \in \mathcal{N}^M} F_i(\omega) + \sum_{i \in \mathcal{N}^R} H_i(\omega)$ is zero in $[-\delta_m/2, \delta_m/2]$ and strictly decreasing in $(-\infty, -\delta_m/2]$ and $[\delta_m/2, \infty)$. If $\sum_{i \in \mathcal{N}} P^I_i \neq 0$, the aggregate power balance $\sum_{i \in \mathcal{N}} P^I_i = \sum_{i \in \mathcal{N}^M} F_i(\omega) + \sum_{i \in \mathcal{N}^R} H_i(\omega)$ has a unique solution for ω. The result follows from Theorem 3. ■

However, if the aggregate uncontrolled load deviation is zero, the convergence is not guaranteed because any $\omega \in [-\delta_m/2, \delta_m/2]$ satisfies the power balance. The system may oscillate, but this oscillation is confined within the deadband.

Theorem 6: Suppose that the aggregate uncontrolled load deviation is zero, i.e., $\sum_{i \in \mathcal{N}} P^I_i = 0$. Then the frequencies will be confined within the deadband at each bus.

Proof: From the saddle point equations, there exists a saddle point (P^*, λ^*) of L such that $\lambda^*_i = 0$, $P^I_i + \sum_{\{j:(i,j) \in \mathcal{E}\}} P_{ij}^* = 0$, $i \in \mathcal{N}$. Notice that $L(P^*, \lambda^*) = 0$. As discussed in Appendix, the saddle point dynamics eventually converges to an invariant set I, and moreover, for any $(P, \lambda) \in I$, we have $L(P^*, \lambda^*) = L(P, \lambda)$ and $L(P, \lambda^*) = L(P^*, \lambda^*)$. From the former equality, we can conclude that $\lambda_i F_i(\lambda_i) = 0, i \in \mathcal{N}^M$ and $\lambda_i H_i(\lambda_i) = 0, i \in \mathcal{N}^R$. This implies $\lambda_i \in [-\delta_i/2, \delta_i/2]$ for all i. Therefore, at I, all the frequencies are confined within the deadband. ■

D. Numerical example

We now use a numerical example to illustrate the analytical results established in the above. Consider a 4-area interconnected system as in Fig. 2, and assume that areas 1-3 have mechanical generators and area 4 has renewable generation. We use the linear approximation described after equation (1) for load frequency response function, and employ droop control of the same form as the example given after equation (2) for generators. The parameters used in simulations are shown in Table I and II.
We consider three different scenarios. The first scenario corresponds to the case with frequency sensitive loads, and the second and third ones correspond to the cases without frequency sensitive loads and are used to illustrate the impact of the deadband. For the first two scenarios, we assume that the uncontrolled load deviates by 1pu at $t = 5s$ in the area 3, $-0.5pu$ at $t = 5s$ in the area 2, and $-1pu$ at $t = 10s$ in the area 1, thus the aggregate load deviation is nonzero after $t = 10s$. For the third scenario, we change the uncontrolled load deviation in area 1 from $-1pu$ to $-0.5pu$ so the aggregate load deviation is 0. Fig. 1 shows the frequency evolution. As expected, the frequencies are synchronized in the first two scenarios (Theorem 4 and Corollary 5), but oscillate within the deadband $[-0.1, 0.1]$ in the third one (Theorem 6).

Remark 1: We have reverse-engineered the frequency dynamics with general primary frequency control, by showing that it is a partial primal-dual gradient algorithm for solving a well-defined optimization problem. The optimization model does not only provide a way to characterize the equilibrium and establish the convergence of the frequency dynamics, but also suggests a principled way to engineer frequency control. New control scheme can be designed in a principled way by engineering the optimization problem and leveraging the insights obtained from reverse engineering, as will be seen in the next section.

IV. Forward Engineering

In this section, we show how to leverage the optimization model and insights obtained from reverse engineering to design a frequency control scheme that does not only maintain the frequency to the nominal value but also achieves economic efficiency in a distributed real-time manner. The new control scheme is drastically different from the current hierarchical control approach that addresses frequency regulation and economic efficiency at different timescales and with centralized control.

Three key points from last section are: 1) network dynamics with frequency control is distributed algorithm solving an optimization problem; 2) the uniqueness of the dual optimum (i.e., the synchronized frequency) is the key to convergence; and 3) the synchronized frequency relates to the aggregate uncontrolled load deviation that frequency sensitive load and generation control need to balance. The first point suggests that we can design different control schemes to achieve different objectives, by decomposing the optimization problems that capture these objectives. The last two points suggest that the desired equilibrium, i.e., $\omega = 0$, can be ensured if $\sum_{i \in \mathcal{N}} G_i(\omega) = 0$ at equilibrium. This leads to a constraint $\sum_{i \in \mathcal{N}} P_i = \sum_{i \in \mathcal{N}^M} P_i^{M} + \sum_{i \in \mathcal{N}^R} P_i^{R}$ at equilibrium. However, to impose this constraint directly will change the decoupling structure that enables distributed algorithm that is key to reverse engineering. We will instead impose it indirectly by imposing the following (decoupling) constraints:

\[
P_i^{M} = P_i^I + \sum_{\{j; (i,j) \in \mathcal{E}\}} Q_{ij}, \quad i \in \mathcal{N}^M, \tag{26}
\]

\[
P_i^{R} = P_i^I + \sum_{\{j; (i,j) \in \mathcal{E}\}} Q_{ij}, \quad i \in \mathcal{N}^R, \tag{27}
\]

\[
0 = P_i^I + \sum_{\{j; (i,j) \in \mathcal{E}\}} Q_{ij}, \quad i \in \mathcal{N}^L, \tag{28}
\]

with $Q_{ij} = -Q_{ji}$.

Consider the following optimization problem, which is problem (12)-(15) with additionally constraints (26)-(28):

\[
\min_{P_i^S, P_i^M, P_i^R, P, Q} \sum_{i \in \mathcal{N}} C_i^S(P_i^S) + \sum_{i \in \mathcal{N}^M} C_i^M(P_i^M) + \sum_{i \in \mathcal{N}^R} C_i^R(P_i^R) \tag{29}
\]

subject to \eqref{eq:13} - \eqref{eq:15} \& \eqref{eq:26} - \eqref{eq:28} \tag{30}

where $Q = \{Q_{ij}; (i,j) \in \mathcal{E}\}$. As in Section III, introduce Lagrangian multipliers $\lambda = \{\lambda_i; i \in \mathcal{N}\}$ for constraints (13)
(15) and \(\mu = \{ \mu_i; i \in \mathcal{N} \} \) for (26)-(28), we can define a Lagrangian \(L(P^S, P^M, P^R, P, Q; \lambda, \mu) \) and a reduced Lagrangian
\[
\hat{L}(P, Q; \lambda^M, \mu) = \max_{\lambda^R, \lambda^L, P^S, P^M, P^R} \min_{\lambda^R, \lambda^L, P^S, P^M, P^R} L(P^S, P^M, P^R, P, Q; \lambda, \mu).
\]
Consider the saddle point dynamics for \(\hat{L} \):
\[
\dot{\lambda}_i = \kappa_i (F_i(\lambda_i + \mu_i) - G_i(\lambda_i) - P_i^I - \sum_{(j;i,j) \in \mathcal{E}} P_{ij}), \quad i \in \mathcal{N}^M,
\]
\[
0 = G_i(\lambda_i) + P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^R,
\]
\[
0 = G_i(\lambda_i) + P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^L,
\]
\[
\dot{P}_{ij} = \epsilon_{ij}(\lambda_i - \lambda_j), \quad (i, j) \in \mathcal{E},
\]
\[
\dot{\mu}_i = \xi_i (F_i(\lambda_i + \mu_i) - P_i^I - \sum_{(j;i,j) \in \mathcal{E}} Q_{ij}), \quad i \in \mathcal{N}^M,
\]
\[
\dot{\mu}_i = \xi_i (H_i(\lambda_i + \mu_i) - P_i^I - \sum_{(j;i,j) \in \mathcal{E}} Q_{ij}), \quad i \in \mathcal{N}^R,
\]
\[
\dot{\mu}_i = -\xi_i (P_i^I + \sum_{(j;i,j) \in \mathcal{E}} Q_{ij}), \quad i \in \mathcal{N}^L,
\]
\[
\dot{Q}_{ij} = \epsilon_{ij}(\mu_i - \mu_j), \quad (i, j) \in \mathcal{E},
\]
where \(\kappa_i > 0, \epsilon_{ij} > 0, \xi_i > 0, \) and \(\epsilon_{ij} > 0 \). This saddle point dynamics gives the frequency dynamics under a new frequency control scheme, if identifying \(\lambda_i = \omega_i \) and setting \(\epsilon_{ij} = B_{ij} \) and \(\kappa_i = \frac{1}{\bar{M}_i} \). With this understanding, we will also refer it as the frequency dynamics and use \(\lambda_i \) and \(\omega_i \) interchangeably. The following result is immediate.

Proposition 7: Let \(\mathcal{S} \) be the set of saddle points of the Lagrangian \(L \). If \((P^S, P^M, P^R, P, Q; \lambda, \mu) \in \mathcal{S} \), then
\[
\omega_i = \omega, \quad \mu_i = \gamma, \quad i \in \mathcal{N},
\]
\[
F_i(\gamma) = P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^M,
\]
\[
H_i(\gamma) = P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^R,
\]
\[
0 = P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^N,
\]
where \(\omega = 0 \) and \(\gamma \) is a certain constant.

Proof: The result follows from the KKT condition for the saddle point. In particular, \(\omega_i = \omega_j \) and \(\mu_i = \mu_j \) for all \((i, j) \in \mathcal{E} \), which leads to the first equation of (39). Also,
\[
F_i(\omega + \gamma) = G_i(\omega) + P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^M,
\]
\[
H_i(\omega + \gamma) = G_i(\omega) + P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^R,
\]
\[
0 = G_i(\omega) + P_i^I + \sum_{(j;i,j) \in \mathcal{E}} P_{ij}, \quad i \in \mathcal{N}^N.
\]
the current hierarchical control approach that addresses frequency regulation and economic efficiency at different timescales, and is what is needed for the future power system to cope with rapid and large fluctuations in supply/demand and manage a huge number of control points.

A. Implementation

Notice that the frequency control scheme in (31)-(38) cannot be implemented directly, as P_i^f, which is usually unknown and time-varying, is needed for updating ν_i. However, if we choose $\xi_i = 1/M_i$, $i \in \mathcal{N}_M$ and let $\nu_i = \omega_i - \mu_i$, $i \in \mathcal{N}_M$, we can replace equation (35) by

$$\dot{\nu}_i = -\frac{1}{M_i} (G_i(\omega_i) + \sum_{(j; i,j) \in \mathcal{E}} (P_{ij} - Q_{ij})), \ i \in \mathcal{N}_M,$$

obtained by subtracting (35) from (31). Moreover, we can solve for \dot{P}_i^f, $i \in \mathcal{N}_R \cup \mathcal{N}_L$ from power balance equations (32)-(33), and implement equations (36)-(37) as

$$\dot{\mu}_i = \xi_i (G_i(\omega_i) + \sum_{(j; i,j) \in \mathcal{E}} (P_{ij} - Q_{ij})), \ i \in \mathcal{N}_R \cup \mathcal{N}_L.$$

To summarize, our proposed power control scheme for frequency control is as follows:

$$P_i^M = F_i(2\omega_i - \nu_i), \ i \in \mathcal{N}_M,$$

$$P_i^R = H_i(\omega_i + \mu_i), \ i \in \mathcal{N}_R,$$

$$Q_{ij} = \varepsilon_{ij}(\mu_i - \mu_j), \ (i, j) \in \mathcal{E},$$

where in the last equation, $\mu_i = \omega_i - \nu_i$ if $i \in \mathcal{N}_M$. Notice that frequencies ω_i and branch flows P_{ij} can be measured locally, the frequency response G_i can be learned locally,4 and variables ν_i, μ_i, Q_{ij} can be calculated with local information at the buses. So, the above frequency control is distributed.

B. Numerical example

We test the above new frequency control scheme with the system shown in Fig. 2. We assume the same uncontrolled load deviations as those in the first two scenarios and the same generator parameters as in Table I in Section III-D. We consider two different sets of line parameters: those in Table II and more realistic parameters in Table III. Fig. 3 shows the frequency evolution. We see that the new control scheme quickly recovers the nominal frequency. Also notice that the fast synchronization shown in right panel is a result from large coupling coefficients B_{ij} between different areas.

4We will discuss how to learn G_i directly or indirectly in a follow-up paper. But also notice that in many application scenarios such as frequency-based load management or in microgrids, the load frequency response is by design and is thus known. Moreover, in equations (50)-(51), the exact information on G_i is not essential. This can be seen intuitively from Theorem 10 which is oblivious of P_i^S. We will elaborate on this in the follow-up paper.

Table III: Line Parameters

<table>
<thead>
<tr>
<th>Line</th>
<th>1-2</th>
<th>2-3</th>
<th>3-4</th>
<th>4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{ij}</td>
<td>26.5311</td>
<td>34.5333</td>
<td>17.2802</td>
<td>21.9803</td>
</tr>
</tbody>
</table>

Fig. 3: Frequency dynamics with the new control scheme with the line parameters in Table II (left panel) and in Table III (right panel).

V. CONCLUSION

We have reverse-engineered the frequency dynamics with general primary frequency control, by showing that it is a distributed algorithm to solve a well-defined optimization problem. We have also investigated the role of deadband in control, and showed that if the aggregated uncontrolled load deviation is nonzero the frequencies will be synchronized, and if however it is zero the frequencies may oscillate but within the deadband. By leveraging the optimization problem and insights from reverse engineering, we have proposed a distributed realtime frequency control scheme that does not only maintain the frequency to the nominal value but also achieves economic efficiency. This is drastically different from the current hierarchical control approach that addresses frequency regulation and economic efficiency at different timescales and with centralized control, and is what is needed for the future power system to cope with rapid and large fluctuations in supply/demand and manage a huge number of control points. This work presents a step towards developing a new foundation – network dynamics as optimization algorithms – for distributed real-time control and optimization of future power networks.

ACKNOWLEDGEMENT

L. Chen thanks Steven Low for helpful discussion. We also thank the anonymous reviewers for their insightful comments.

APPENDIX: SADDLE POINT DYNAMICS

Consider a Lagrangian $L(x, y)$, corresponding to a (convex) constrained minimization problem \mathcal{P} over x [4]. So, L is convex in primal variable x and concave in dual variable y. Assume that L is differentiable and ∇L is locally Lipschitz, and furthermore, L has a saddle point (x^*, y^*), i.e.,

$$L(x, y) \leq L(x^*, y^*) \leq L(x, y^*).$$

A saddle point gives a primal-dual optimum of problem \mathcal{P} and its dual [4]. We denote by S the set of saddle points of L. We will study the saddle point dynamics F:

$$\dot{x} = -\Gamma_x \frac{\partial L}{\partial x},$$

$$\dot{y} = \Gamma_y \frac{\partial L}{\partial y},$$

where Γ_x and Γ_y are positive definite matrices. The saddle point dynamics corresponds to the primal-dual gradient algorithm for solving \mathcal{P} and its dual. The case with $L \in \mathcal{C}^2$ has
been studied in [14], but here we want to generalize to the case where L is differentiable and ∇L is locally Lipschitz but not necessarily differentiable. References [26], [17] also study a similar dynamics, corresponding to the case where L is strictly concave in y and the generation cost function is differentiable. Neither of these two properties is necessarily true in our case. These subtle differences have an outcome on convergence and require a refinement of the results in [14], [26], [17], although the details are in the same spirit.

Define a Lyapunov function

$$U(x, y; x^*, y^*) = \frac{1}{2}((x - x^*)^T \Gamma^{-1}_x (x - x^*) + (y - y^*)^T \Gamma^{-1}_y (y - y^*))$$

and consider its Lie-derivative $L\mathcal{F} U(x, y; x^*, y^*)$ along the flow generated by the differential equation \mathcal{F}:

$$L\mathcal{F} U(x, y; x^*, y^*) = \left[-\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}\right]^T \left[\Gamma^{-1}_x (x - x^*) + \Gamma^{-1}_y (y - y^*)\right]$$

$$\leq -L(x, y) + L(x^*, y) + L(x, y) - L(x, y^*)$$

$$= L(x^*, y) - L(x, y^*)$$

$$= L(x^*, y) - L(x^*, y^*) + L(x^*, y^*) - L(x^*, y^*)$$

$$\leq 0,$$

where the first inequality comes from the fact that L is convex in x and concave in y, and the last inequality from (x^*, y^*) being a saddle point of L. Notice that if $L\mathcal{F} U(x, y; x^*, y^*) = 0$, then all the inequalities become equality, and $L(x^*, y^*) = L(x^*, y^*)$ and $L(x^*, y^*) = L(x^*, y^*)$. From LaSalle’s invariance principle [16], the trajectory of \mathcal{F} will be eventually contained in a compact subset of the invariant set

$$\mathcal{I} = \{(x, y) : L\mathcal{F} U(x, y; x^*, y^*) = 0\}.$$

The invariance set \mathcal{I} may not be a subset of the set S of all saddle points of L, which means that the trajectory is bounded but may not converge. For example, suppose $L(x, y) = x^T y$. Then $S = \{(0, 0)\}$ and the dynamics is given by: $\dot{x} = y, \dot{y} = y$. The system oscillates around $(0, 0)$ unless it is initially at $(0, 0)$, and the trajectory is bounded but \mathcal{I} is not contained in S.

In order to ensure that the invariance set \mathcal{I} is contained in the saddle point set S, we can impose further constraint.

Proposition 11: Suppose $L(x^*, \cdot)$ has a unique maximizer y^* or $L(\cdot, y^*)$ has a unique minimizer x^*. If $(x, y) \in \mathcal{I}$, then $(x, y) \in S$.

Proposition 12: Suppose $L(x^*, \cdot)$ has a unique maximizer y^* or $L(\cdot, y^*)$ has a unique minimizer x^*. Then, the saddle point dynamics \mathcal{F} asymptotically converges to a compact subset of S.

However, the above result does not give a pointwise convergence, which will be ensured in the following proposition.

Proposition 13: Suppose $L(x^*, \cdot)$ has a unique maximizer y^* or $L(\cdot, y^*)$ has a unique minimizer x^*. Then, the saddle point dynamics \mathcal{F} asymptotically converges to a saddle point $(x^*, y^*) \in \mathcal{I}$.

Remark 2: See the extended version [24] for the proofs of Propositions 11-13.