Concentration Inequalities for System Identification

Stephen Tu

Google Brain Robotics

CDC 2019 Tutorial

* Given **input/output** access to $x_{t+1} = Ax_t + Bu_t + w_t$.

* Given input/output access to $x_{t+1} = Ax_t + Bu_t + w_t$. * Assume $w_t \sim \mathcal{N}(0, \sigma^2 I)$.

- * Given input/output access to $x_{t+1} = Ax_t + Bu_t + w_t$. * Assume $w_t \sim \mathcal{N}(0, \sigma^2 I)$.
- * Goal is to recover (A, B) given $\mathcal{D} = \{(x_t, u_t, x_{t+1})\}_{t=0}^{T-1}$.

* Given **input/output** access to $x_{t+1} = Ax_t + Bu_t + w_t$.

* Assume $w_t \sim \mathcal{N}(0, \sigma^2 I)$.

- * Goal is to recover (A, B) given $\mathcal{D} = \{(x_t, u_t, x_{t+1})\}_{t=0}^{T-1}$.
- * Want **bounds** on estimators (\hat{A}, \hat{B}) of the form: $\mathbb{P}(\|\hat{A} - A\| \ge \varepsilon) \le \delta,$ $\mathbb{P}(\|\hat{B} - B\| \ge \varepsilon) \le \delta.$

Least-squares estimator

Least-squares estimator

* Basic least-squares estimator: $(\hat{A}, \hat{B}) = \arg\min_{A,B} \frac{1}{2} \sum_{i=0}^{T-1} ||x_{i+1} - Ax_i - Bu_i||^2.$

Least-squares estimator

* Basic least-squares estimator: $(\hat{A}, \hat{B}) = \arg\min_{A, B} \frac{1}{2} \sum_{i=0}^{T-1} ||x_{i+1} - Ax_i - Bu_i||^2.$

* Has closed-form solution:

$$(\hat{A}, \hat{B}) = \left(\sum_{i=0}^{t-1} x_{i+1} z_i^{\mathsf{T}}\right) \left(\sum_{i=0}^{t-1} z_i z_i^{\mathsf{T}}\right)^{-1}, \ z_i = \begin{bmatrix} x_i \\ u_i \end{bmatrix}.$$

* Asymptotics of the least-squares estimator are well understood (in both stable/unstable case).

- * Asymptotics of the least-squares estimator are well understood (in both stable/unstable case).
- * For simplicity, let us assume scalar autonomous system:

 $x_{t+1} = ax_t + w_t$

- Asymptotics of the least-squares estimator are well understood (in both stable/unstable case).
- * For simplicity, let us assume scalar autonomous system:

 $x_{t+1} = ax_t + w_t$

* Then from [Mann and Wald 1943, White 1958], we have a CLT: $\sqrt{T}(\hat{a}_T - a) \xrightarrow{d} \mathcal{N}(0, 1 - a^2)$ if |a| < 1, $T(\hat{a}_T - a) \xrightarrow{d} \Phi$ if |a| = 1, $|a|^T (\hat{a}_T - a) \xrightarrow{d} (a^2 - 1) \Psi$ if |a| > 1

- Asymptotics of the least-squares estimator are well understood (in both stable/unstable case).
- * For simplicity, let us assume scalar autonomous system:

 $x_{t+1} = ax_t + w_t$

- * Then from [Mann and Wald 1943, White 1958], we have a CLT: $\sqrt{T}(\hat{a}_T - a) \xrightarrow{d} \mathcal{N}(0, 1 - a^2) \text{ if } |a| < 1,$ $T(\hat{a}_T - a) \xrightarrow{d} \Phi \text{ if } |a| = 1,$ $|a|^T (\hat{a}_T - a) \xrightarrow{d} (a^2 - 1) \Psi \text{ if } |a| > 1$
 - * Φ is a non-standard distribution, Ψ is standard Cauchy.

* CLT:

$$\sqrt{T}(\hat{a}_T - a) \xrightarrow{d} \mathcal{N}(0, 1 - a^2) \text{ if } |a| < 1,$$

$$T(\hat{a}_T - a) \xrightarrow{d} \Phi \text{ if } |a| = 1,$$

$$|a|^T(\hat{a}_T - a) \xrightarrow{d} (a^2 - 1)\Psi \text{ if } |a| > 1$$

* CLT:

$$\sqrt{T}(\hat{a}_T - a) \xrightarrow{d} \mathcal{N}(0, 1 - a^2) \text{ if } |a| < 1,$$

$$T(\hat{a}_T - a) \xrightarrow{d} \Phi \text{ if } |a| = 1,$$

$$|a|^T (\hat{a}_T - a) \xrightarrow{d} (a^2 - 1) \Psi \text{ if } |a| > 1$$

 Therefore, as *a* becomes more "explosive", estimation becomes easier!

Beyond asymptotics

Beyond asymptotics

Can we prove finite-time (non-asymptotic) rates in the scalar case?

Beyond asymptotics

- Can we prove finite-time (non-asymptotic) rates in the scalar case?
- * Can we generalize to the **vector** case?

* Proof sketch of autonomous scalar case.

- * Proof sketch of autonomous scalar case.
- * Discuss why vector case is a non-trivial extension.

- * Proof sketch of autonomous scalar case.
- * Discuss why vector case is a non-trivial extension.
- * Discuss state-of-the-art results in the vector case.

* Dynamics are $x_{t+1} = ax_t + w_t$.

* Dynamics are $x_{t+1} = ax_t + w_t$.

* LS estimator simplifies to $\hat{a}_t = \frac{\sum_{i=0}^{t-1} x_i x_{i+1}}{\sum_{i=0}^{t-1} x_i^2}.$

* Dynamics are $x_{t+1} = ax_t + w_t$.

LS estimator simplifies to $\hat{a}_t = \frac{\sum_{i=0}^{t-1} x_i x_{i+1}}{\sum_{i=0}^{t-1} x_i^2}.$

* Error is therefore:

$$e_t := a_t - a = \frac{\sum_{i=0}^{t-1} x_i w_i}{\sum_{i=0}^{t-1} x_i^2}.$$

* Define
$$M_t := \sum_{i=0}^{t-1} x_i w_i$$
 with $M_0 = 0$.

* Define
$$M_t := \sum_{i=0}^{t-1} x_i w_i$$
 with $M_0 = 0$.

* Define the filtration $\mathcal{F}_t := \sigma(w_0, \dots, w_{t-1})$.

* Define
$$M_t := \sum_{i=0}^{t-1} x_i w_i$$
 with $M_0 = 0$.

* Define the filtration $\mathcal{F}_t := \sigma(w_0, \dots, w_{t-1})$.

* (x_0, \ldots, x_t, M_t) are \mathcal{F}_t -measurable.

* Define
$$M_t := \sum_{i=0}^{t-1} x_i w_i$$
 with $M_0 = 0$.

* Define the filtration $\mathcal{F}_t := \sigma(w_0, \dots, w_{t-1})$.

* (x_0, \ldots, x_t, M_t) are \mathcal{F}_t -measurable.

* Furthermore, M_t is a martingale since: $\mathbb{E}[M_{t+1} | \mathcal{F}_t] = \mathbb{E}[M_t | \mathcal{F}_t] + \mathbb{E}[x_t w_t | \mathcal{F}_t]$ $= M_t + x_t \mathbb{E}[w_t | \mathcal{F}_t]$ $= M_t$

* Next, we define the **quadratic variation** $\langle M \rangle_t$ as: $\langle M \rangle_t := \sum_{i=0}^{t-1} \mathbb{E}[(M_{i+1} - M_i)^2 | \mathcal{F}_i].$

* Next, we define the quadratic variation $\langle M \rangle_t$ as: $\langle M \rangle_t := \sum_{i=0}^{t-1} \mathbb{E}[(M_{i+1} - M_i)^2 | \mathcal{F}_i].$

A quick computation shows that $\langle M \rangle_t = \sigma^2 \sum_{i=0}^{t-1} x_i^2$.

Key scalar martingale

* Next, we define the **quadratic variation** $\langle M \rangle_t$ as: $\langle M \rangle_t := \sum_{i=0}^{t-1} \mathbb{E}[(M_{i+1} - M_i)^2 | \mathcal{F}_i].$

A quick computation shows that $\langle M \rangle_t = \sigma^2 \sum_{i=0}^{t-1} x_i^2$.

* Therefore, we can write:

$$e_{t} = \frac{\sum_{i=0}^{t-1} x_{i} w_{i}}{\sum_{i=0}^{t-1} x_{i}^{2}} = \sigma^{2} \frac{M_{t}}{\langle M \rangle_{t}}$$

* It turns out that the quantity $\frac{M_t}{\langle M \rangle_t}$ is well-studied in probability theory.

- ✤ It turns out that the quantity $\frac{M_t}{\langle M \rangle_t}$ is well-studied in probability theory.
- * Is often referred to as a **self-normalized** process.

- ✤ It turns out that the quantity $\frac{M_t}{\langle M \rangle_t}$ is well-studied in probability theory.
- * Is often referred to as a **self-normalized** process.
- A rich body of concentration inequalities to draw from that are of the form:

 $\mathbb{P}(M_t \ge \alpha \langle M \rangle_t) \le \dots$

Self-normalized inequality

Self-normalized inequality

* One concrete result from [Bercu and Touati 08]: $\mathbb{P}(M_n \ge \alpha \langle M \rangle_n) \le \inf_{p \ge 1} \left(\mathbb{E} \left[\exp \left(-(p-1) \frac{\alpha^2}{2} \langle M \rangle_n \right) \right] \right)^{1/p}.$

Self-normalized inequality

* One concrete result from [Bercu and Touati 08]:

$$\mathbb{P}(M_n \ge \alpha \langle M \rangle_n) \le \inf_{p \ge 1} \left(\mathbb{E} \left[\exp\left(-(p-1) \frac{\alpha^2}{2} \langle M \rangle_n \right) \right] \right)^{1/p}$$
Sanity check: if $M_n = \sum_{i=1}^n w_i$ with $w_i \sim \mathcal{N}(0, \sigma^2)$, then this reduces to $\mathbb{P}\left(\sum_{i=1}^n w_i \ge t\right) \le \exp(-t^2/(2n\sigma^2))$.

Bounding moment generating function

Bounding moment generating function

* The next step is to control: $\mathbb{E} \exp\left(\theta \sum_{i=0}^{T-1} x_i^2\right), \ \theta < 0.$

Bounding moment generating function

* The next step is to control: $\mathbb{E} \exp\left(\theta \sum_{i=0}^{T-1} x_i^2\right), \ \theta < 0.$

* By tower property of expectations:

$$\mathbb{E}\left[\exp\left(\theta\sum_{i=0}^{T-2}x_i^2\right)\mathbb{E}\left[\exp\left(\theta x_{T-1}^2\right)|\mathcal{F}_{T-2}\right]\right]$$

$$= \mathbb{E}\left[\exp\left(\theta \sum_{i=0}^{T-2} x_i^2\right) \mathbb{E}\left[\exp\left(\theta (a x_{T-2} + w_{T-1})^2\right) | \mathcal{F}_{T-2}\right]\right]$$

An elementary MGF bound

An elementary MGF bound

* An elementary result states that for $\theta < 0$ and μ fixed, $\mathbb{E} \exp(\theta(\mu + w)^2) \leq \frac{1}{\sqrt{1 - 2\sigma^2 \theta}}, \ w \sim \mathcal{N}(0, \sigma^2).$

An elementary MGF bound

- * An elementary result states that for $\theta < 0$ and μ fixed, $\mathbb{E} \exp(\theta(\mu + w)^2) \leq \frac{1}{\sqrt{1 - 2\sigma^2 \theta}}, \ w \sim \mathcal{N}(0, \sigma^2).$
- * Therefore: $\mathbb{E}\left[\exp\left(\theta\sum_{i=0}^{T-2}x_{i}^{2}\right)\mathbb{E}[\exp\left(\theta x_{T-1}^{2}\right)|\mathscr{F}_{T-2}]\right] = \mathbb{E}\left[\exp\left(\theta\sum_{i=0}^{T-2}x_{i}^{2}\right)\mathbb{E}[\exp\left(\theta(ax_{T-2}+w_{T-1})^{2}\right)|\mathscr{F}_{T-2}]\right]$ $\leq \mathbb{E}\exp\left(\theta\sum_{i=0}^{T-2}x_{i}^{2}\right)\frac{1}{\sqrt{1-2\sigma^{2}\theta}}$ $\leq \dots$ $\leq \frac{1}{(1-2\sigma^{2}\theta)^{T/2}}$

Putting it together

* Recall the inequality from [Bercu and Touati 08]: $\mathbb{P}(e_T \ge v) \le \inf_{p \ge 1} \left(\mathbb{E}\left[\exp\left(-(p-1)\frac{v^2}{2\sigma^2}\sum_{i=0}^{T-1}x_i^2\right) \right] \right)^{1/p}.$

- * Recall the inequality from [Bercu and Touati 08]: $\mathbb{P}(e_T \ge v) \le \inf_{p \ge 1} \left(\mathbb{E}\left[\exp\left(-(p-1)\frac{v^2}{2\sigma^2}\sum_{i=0}^{T-1}x_i^2\right) \right] \right)^{1/p}.$
- * Now setting $\theta = -(p-1)v^2/(2\sigma^2)$, $\mathbb{P}(e_T \ge v) \le \inf_{p\ge 1} \left[\frac{1}{1+(p-1)v^2}\right]^{T/2p} \le \left[\frac{1}{1+v^2}\right]^{T/4}$.

Putting it together

* Repeating the same argument for $-e_T$, we obtain our first concentration inequality by a union bound:

$$\mathbb{P}(|e_T| \ge v) \le 2\left[\frac{1}{1+v^2}\right]^{T/4}$$

- * Repeating the same argument for $-e_T$, we obtain our first concentration inequality by a union bound: $\mathbb{P}(|e_T| \ge v) \le 2 \left[\frac{1}{1+v^2}\right]^{T/4}$.
- * Inverting this bound for large *T*, this states that with probability at least 1δ , we have roughly:

$$e_T \leq \sqrt{\frac{1}{T}\log(1/\delta)}.$$

* Note that this bound we derived is **not sharp!**

- * Note that this bound we derived is **not sharp!**
- * First, consider stable |a| < 1. From CLT we know that $\sqrt{Te_T} \stackrel{d}{\rightarrow} \mathcal{N}(0, 1 a^2)$. Hence a more correct bound would

have the form
$$|e_T| \asymp \sqrt{\frac{1-a^2}{T}}$$
.

- * Note that this bound we derived is **not sharp!**
- * First, consider stable |a| < 1. From CLT we know that $\sqrt{Te_T} \stackrel{d}{\rightarrow} \mathcal{N}(0, 1 a^2)$. Hence a more correct bound would

have the form
$$|e_T| \asymp \sqrt{\frac{1-a^2}{T}}$$
.

* Situation is even worse for unstable |a| > 1, where we expect exponential rates: $|e_T| \approx \frac{a^2 - 1}{|a|^T}$.

Sharpening the scalar bound

* The bound can be sharpened by a more refined MGF analysis— see Theorem B.1 from [Simchowitz et al. 19].

Difficulties of vector case

* Our setup is now $x_{t+1} = Ax_t + w_t$.

- * Our setup is now $x_{t+1} = Ax_t + w_t$.
- * The error term is:

$$E_T := \left(\sum_{i=0}^{T-1} w_i x_i^{\mathsf{T}}\right) \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}\right)^{-1}$$

- * Our setup is now $x_{t+1} = Ax_t + w_t$.
- * The error term is:

$$E_T := \left(\sum_{i=0}^{T-1} w_i x_i^{\mathsf{T}}\right) \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}\right)^{-1}$$

* We consider the following decomposition: $\| \left(\sum_{i=0}^{T-1} w_i x_i^{\mathsf{T}} \right) \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \right)^{-1/2} \|$ $\| E_T \| \leq \frac{\sqrt{\lambda_{\min} \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \right)}}{\sqrt{\lambda_{\min} \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \right)}}$

The term $\left\| \left(\sum_{i=0}^{T-1} w_i x_i^{\mathsf{T}} \right) \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \right)^{-1/2} \right\|$ is a vector-

valued **self-normalized** martingale. For stable *A*, also not too difficult to bound [Abbasi-Yadkori et al. 11].

The term $\left\| \left(\sum_{i=0}^{T-1} w_i x_i^{\mathsf{T}} \right) \left(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \right)^{-1/2} \right\|$ is a vector-

valued self-normalized martingale. For stable A, also not too difficult to bound [Abbasi-Yadkori et al. 11].

The tricky part is lower bounding $\lambda_{\min}\left(\sum_{i=0}^{I-1} x_i x_i^{\mathsf{T}}\right)$.

Attempt 1: Matrix Chernoff

Attempt 1: Matrix Chernoff

Define
$$\Sigma_T := \sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}$$
. For $\theta > 0$:
 $\mathbb{P} \left(\lambda_{\min}(\Sigma_T) \leq v \right) = \mathbb{P}(-\theta \lambda_{\min}(\Sigma_T) \geq -\theta v)$
 $= \mathbb{P}(\exp(-\theta \lambda_{\min}(\Sigma_T)) \geq \exp(-\theta v))$
 $\leq \exp(\theta v) \mathbb{E} \exp(-\theta \lambda_{\min}(\Sigma_T))$
 $= \exp(\theta v) \mathbb{E} \exp(\lambda_{\max}(-\theta \Sigma_T))$
 $= \exp(\theta v) \mathbb{E} \lambda_{\max}(\exp(-\theta \Sigma_T))$
 $\leq \exp(\theta v) \mathbb{E} tr \exp(-\theta \Sigma_T)$

Attempt 1: Matrix Chernoff

$$\begin{array}{l} \text{Define } \Sigma_T := \sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}. \text{ For } \theta > 0: \\ \mathbb{P} \left(\lambda_{\min}(\Sigma_T) \leq v \right) = \mathbb{P}(-\theta \lambda_{\min}(\Sigma_T) \geq -\theta v) \\ = \mathbb{P}(\exp(-\theta \lambda_{\min}(\Sigma_T)) \geq \exp(-\theta v)) \\ \leq \exp(\theta v) \mathbb{E} \exp(-\theta \lambda_{\min}(\Sigma_T)) \\ = \exp(\theta v) \mathbb{E} \exp(\lambda_{\max}(-\theta \Sigma_T)) \\ = \exp(\theta v) \mathbb{E} \lambda_{\max}(\exp(-\theta \Sigma_T)) \\ \leq \exp(\theta v) \mathbb{E} tr \exp(-\theta \Sigma_T) \end{aligned}$$

* Therefore:

$$\mathbb{P}(\lambda_{\min}(\Sigma_T) \le v) \le \inf_{\theta < 0} \exp(-\theta v) \mathbb{E}\operatorname{tr} \exp(\theta \Sigma_T).$$

* In the scalar case, we were able to bound for $\theta < 0$, $\mathbb{E} \exp(\theta \sum_{i=0}^{T-1} x_i^2) \le \frac{1}{(1 - 2\sigma^2 \theta)^{T/2}}.$

- * In the scalar case, we were able to bound for $\theta < 0$, $\mathbb{E} \exp(\theta \sum_{i=0}^{T-1} x_i^2) \le \frac{1}{(1 - 2\sigma^2 \theta)^{T/2}}.$
- * The matrix version is to bound \mathbb{E} tr exp $(\theta \Sigma_T)$.

- * In the scalar case, we were able to bound for $\theta < 0$, $\mathbb{E} \exp(\theta \sum_{i=0}^{T-1} x_i^2) \le \frac{1}{(1 - 2\sigma^2 \theta)^{T/2}}.$
- * The matrix version is to bound \mathbb{E} tr exp($\theta \Sigma_T$).
- * The difficulty is that $\exp(A + B) \neq \exp(A)\exp(B)$ for matrices, so the scalar proof does not go through.

* To avoid matrix issues, we can consider the scalar process $\sum_{i=0}^{T-1} \langle v, x_i \rangle^2 \text{ for a fixed } v \in S^{n-1}.$

* To avoid matrix issues, we can consider the scalar process $\sum_{i=0}^{T-1} \langle v, x_i \rangle^2$ for a fixed $v \in S^{n-1}$.

We can then use scalar analysis to lower bound $\sum_{i=0}^{T-1} \langle v, x_i \rangle^2$ for each fixed *v*.

* To avoid matrix issues, we can consider the scalar process $\sum_{i=0}^{T-1} \langle v, x_i \rangle^2 \text{ for a fixed } v \in S^{n-1}.$

We can then use scalar analysis to lower bound $\sum_{i=0}^{T-1} \langle v, x_i \rangle^2$ for each fixed *v*.

But
$$\lambda_{\min}(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}) = \inf_{\|v\|=1} \sum_{i=0}^{T-1} \langle v, x_i \rangle^2$$
. How do you pass to uniformly on \mathcal{S}^{n-1} ?

* Naive covering argument: $\lambda_{\min}(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}) = \inf_{\|v\|=1} \sum_{i=0}^{T-1} \langle v, x_i \rangle^2$ $\geq \min_{v \in N(\varepsilon)} \sum_{i=0}^{T-1} \langle v, x_i \rangle^2 - 2\varepsilon \|\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}\|$

 Naive covering argument: $\lambda_{\min}(\sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}}) = \inf_{\|v\|=1} \sum_{i=0}^{T-1} \langle v, x_i \rangle^2$ T-1 $\geq \min_{v \in N(\varepsilon)} \sum_{i=0}^{T-1} \langle v, x_i \rangle^2 - 2\varepsilon \| \sum_{i=0}^{T-1} x_i x_i^{\mathsf{T}} \|$ T - 1But this requires upper bound on $\|\sum x_i x_i^{\mathsf{T}}\|$, which is very i=0unsatisfying! (nevertheless this does work in the stable case).

State of the art vector results

Stable case

Stable case

* [Simchowitz et al. 19]: If $\rho(A) < 1$, then with probability at least $1 - \delta$:

$$\|\hat{A}_T - A\| \lesssim \sqrt{\frac{n \log(n/\delta)}{T\lambda_{\min}(\Sigma_{\infty})}}.$$

Stable case

* [Simchowitz et al. 19]: If $\rho(A) < 1$, then with probability at least $1 - \delta$:

$$\|\hat{A}_T - A\| \lesssim \sqrt{\frac{n \log(n/\delta)}{T\lambda_{\min}(\Sigma_{\infty})}}.$$

* Here, Σ_{∞} is the stationary covariance: $A\Sigma_{\infty}A^{\mathsf{T}} - \Sigma_{\infty} + \sigma^{2}I = 0.$

Marginally stable case

Marginally stable case

* [Simchowitz et al. 19]: In the special case when A = Owith O orthogonal, then with probability $1 - \delta$: $\|\hat{A}_T - A\| \lesssim \frac{n \log(n/\delta)}{T}$.

"Explosive" case

* [Sarkar and Rakhlin 19]: If $|\lambda_i| > 1$ for all *i*, then with probability at least $1 - \delta$: $\|\hat{A}_T - A\| \leq \|A^{-T}\|/\delta$.

- * Simchowitz et al. *Learning Without Mixing: Towards a Sharp Analysis of Linear System Identification.* Conference on Learning Theory. 2019.
- * Sarkar and Rakhlin. *Near optimal finite time identification of arbitrary linear dynamical systems*. ICML 2019.
- * Rantzer. Concentration Bounds for Single Parameter Adaptive Control. ACC 2018.
- * Abbasi-Yadkori et al. Online Least Squares Estimation with Self-Normalized Processes: An Application to Bandit Problems. Conference on Learning Theory 2011.
- * Bercu and Touati. *Exponential inequalities for self-normalized martingales with applications*. Ann. Appl. Probab. 18(5). 2008.
- * Mann and Wald. *On the Statistical Treatment of Linear Stochastic Difference Equations*. Econometrica 11(3-4). 1943.
- * White. *The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case*. Ann. Math. Statist. 29(4). 1958.