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Problem statement
❖ Given input/output access to .xt+1 = Axt + But + wt

❖ Assume .wt ∼ 𝒩(0,σ2I)

❖ Goal is to recover  given .(A, B) 𝒟 = {(xt, ut, xt+1)}T−1
t=0

❖ Want bounds on estimators  of the form:  
                         , 
                         .

( ̂A, B̂)
ℙ(∥ ̂A − A∥ ≥ ε) ≤ δ
ℙ(∥B̂ − B∥ ≥ ε) ≤ δ
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Least-squares estimator
❖ Basic least-squares estimator:  

             .( ̂A, B̂) = arg min
A,B

1
2

T−1

∑
i=0

∥xi+1 − Axi − Bui∥2

❖ Has closed-form solution:  

     . ( ̂A, B̂) = (
t−1

∑
i=0

xi+1z𝖳
i ) (

t−1

∑
i=0

ziz𝖳
i )

−1

, zi = [xi
ui]
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What do we know about LS?
❖ Asymptotics of the least-squares estimator are well understood (in both 

stable/unstable case).

❖ For simplicity, let us assume scalar autonomous system:  
                                          xt+1 = axt + wt

❖ Then from [Mann and Wald 1943, White 1958], we have a CLT:  
                        , 

                            , 

                      

T( ̂aT − a) d 𝒩(0,1 − a2) if  |a | < 1

T( ̂aT − a) d Φ if  |a | = 1

|a |T ( ̂aT − a) d (a2 − 1)Ψ if  |a | > 1

❖  is a non-standard distribution,  is standard Cauchy.  
 
Φ Ψ
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What do we know about LS?
❖ CLT: 

           , 

               , 

         

T( ̂aT − a) d 𝒩(0,1 − a2) if  |a | < 1

T( ̂aT − a) d Φ if  |a | = 1

|a |T ( ̂aT − a) d (a2 − 1)Ψ if  |a | > 1

❖ Therefore, as  becomes more “explosive”, estimation 
becomes easier!

a



Beyond asymptotics



Beyond asymptotics
❖ Can we prove finite-time (non-asymptotic) rates in the 

scalar case?



Beyond asymptotics
❖ Can we prove finite-time (non-asymptotic) rates in the 

scalar case?

❖ Can we generalize to the vector case?
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❖ Discuss why vector case is a non-trivial extension.

❖ Discuss state-of-the-art results in the vector case.
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Scalar case setup
❖ Dynamics are .xt+1 = axt + wt

❖
LS estimator simplifies to .̂at =

∑t−1
i=0 xixi+1

∑t−1
i=0 x2

i

❖ Error is therefore:  

                          .et := at − a =
∑t−1

i=0 xiwi

∑t−1
i=0 x2

i
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Key scalar martingale

❖
Define  with . Mt :=

t−1

∑
i=0

xiwi M0 = 0

❖ Define the filtration . ℱt := σ(w0, . . . , wt−1)

❖  are -measurable.(x0, . . . , xt, Mt) ℱt

❖ Furthermore,  is a martingale since:  

         

Mt
𝔼[Mt+1 |ℱt] = 𝔼[Mt |ℱt] + 𝔼[xtwt |ℱt]

= Mt + xt𝔼[wt |ℱt]
= Mt
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Key scalar martingale
❖ Next, we define the quadratic variation  as:  

                .

⟨M⟩t

⟨M⟩t :=
t−1

∑
i=0

𝔼[(Mi+1 − Mi)2 |ℱi]

❖
A quick computation shows that .⟨M⟩t = σ2

t−1

∑
i=0

x2
i

❖ Therefore, we can write:  

                              .et =
∑t−1

i=0 xiwi

∑t−1
i=0 x2

i

= σ2 Mt

⟨M⟩t
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Mt

⟨M⟩t

❖ Is often referred to as a self-normalized process. 

❖ A rich body of concentration inequalities to draw from 
that are of the form:  
                               ℙ(Mt ≥ α⟨M⟩t) ≤ . . .
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Self-normalized inequality
❖ One concrete result from [Bercu and Touati 08]:  

.ℙ(Mn ≥ α⟨M⟩n) ≤ inf
p≥1

𝔼 exp (−(p − 1)
α2

2
⟨M⟩n)

1/p

❖
Sanity check: if  with , then this 

reduces to .

Mn =
n

∑
i=1

wi wi ∼ 𝒩(0,σ2)

ℙ (
n

∑
i=1

wi ≥ t) ≤ exp(−t2/(2nσ2))
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Bounding moment generating function
❖ The next step is to control:  

                          .𝔼 exp (θ
T−1

∑
i=0

x2
i ) , θ < 0

❖ By tower property of expectations: 

         

𝔼 exp (θ
T−2

∑
i=0

x2
i ) 𝔼[exp (θx2

T−1) |ℱT−2]

= 𝔼 exp (θ
T−2

∑
i=0

x2
i ) 𝔼[exp (θ(axT−2 + wT−1)2) |ℱT−2]
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An elementary MGF bound
❖ An elementary result states that for  and  fixed,  

       .

θ < 0 μ

𝔼 exp(θ(μ + w)2) ≤
1

1 − 2σ2θ
, w ∼ 𝒩(0,σ2)

❖ Therefore:  
𝔼 exp (θ

T−2

∑
i=0

x2
i ) 𝔼[exp (θx2

T−1) |ℱT−2] = 𝔼 exp (θ
T−2

∑
i=0

x2
i ) 𝔼[exp (θ(axT−2 + wT−1)2) |ℱT−2]

≤ 𝔼 exp (θ
T−2

∑
i=0

x2
i ) 1

1 − 2σ2θ
≤ . . .

≤
1

(1 − 2σ2θ)T/2
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Putting it together
❖ Recall the inequality from [Bercu and Touati 08]:  

.ℙ(eT ≥ v) ≤ inf
p≥1

𝔼 exp (−(p − 1)
v2

2σ2

T−1

∑
i=0

x2
i )

1/p

❖ Now setting ,  

       .

θ = − (p − 1)v2/(2σ2)

ℙ(eT ≥ v) ≤ inf
p≥1 [ 1

1 + (p − 1)v2 ]
T/2p

≤ [ 1
1 + v2 ]

T/4
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Putting it together
❖ Repeating the same argument for , we obtain our 

first concentration inequality by a union bound:  

                     .

−eT

ℙ( |eT | ≥ v) ≤ 2 [ 1
1 + v2 ]

T/4

❖ Inverting this bound for large , this states that with 
probability at least , we have roughly:  

                          .

T
1 − δ

|eT | ≲
1
T

log(1/δ)
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Drawbacks of bound
❖ Note that this bound we derived is not sharp!

❖ First, consider stable . From CLT we know that 
. Hence a more correct bound would 

have the form . 

|a | < 1
TeT

d 𝒩(0,1 − a2)

|eT | ≍
1 − a2

T

❖ Situation is even worse for unstable , where we 

expect exponential rates: . 

|a | > 1

|eT | ≍
a2 − 1
|a |T



Sharpening the scalar bound
❖ The bound can be sharpened by a more refined MGF 

analysis— see Theorem B.1 from [Simchowitz et al. 19]. 
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Vector case setup
❖ Our setup is now . xt+1 = Axt + wt

❖ The error term is:  

                 .ET := (
T−1

∑
i=0

wix𝖳
i ) (

T−1

∑
i=0

xix𝖳
i )

−1

❖ We consider the following decomposition:

.∥ET∥ ≤
(∑T−1

i=0 wix𝖳
i ) (∑T−1

i=0 xix𝖳
i )

−1/2

λmin (∑T−1
i=0 xix𝖳

i )
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❖
The term is a vector-

valued self-normalized martingale. For stable , also 
not too difficult to bound [Abbasi-Yadkori et al. 11].  

(
T−1
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wix𝖳
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Vector case setup

❖
The term is a vector-

valued self-normalized martingale. For stable , also 
not too difficult to bound [Abbasi-Yadkori et al. 11].  

(
T−1

∑
i=0

wix𝖳
i ) (

T−1

∑
i=0

xix𝖳
i )

−1/2

A

❖
The tricky part is lower bounding . λmin (

T−1

∑
i=0

xix𝖳
i )
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❖
Define . For :

.

ΣT :=
T−1

∑
i=0

xix𝖳
i θ > 0

ℙ (λmin(ΣT) ≤ v) = ℙ(−θλmin(ΣT) ≥ − θv)
= ℙ(exp(−θλmin(ΣT)) ≥ exp(−θv))
≤ exp(θv)𝔼 exp(−θλmin(ΣT))
= exp(θv)𝔼 exp(λmax(−θΣT))
= exp(θv)𝔼λmax(exp(−θΣT))
≤ exp(θv)𝔼tr exp(−θΣT)



Attempt 1: Matrix Chernoff

❖
Define . For :

.

ΣT :=
T−1

∑
i=0

xix𝖳
i θ > 0

ℙ (λmin(ΣT) ≤ v) = ℙ(−θλmin(ΣT) ≥ − θv)
= ℙ(exp(−θλmin(ΣT)) ≥ exp(−θv))
≤ exp(θv)𝔼 exp(−θλmin(ΣT))
= exp(θv)𝔼 exp(λmax(−θΣT))
= exp(θv)𝔼λmax(exp(−θΣT))
≤ exp(θv)𝔼tr exp(−θΣT)

❖ Therefore:  
                    .ℙ(λmin(ΣT) ≤ v) ≤ inf

θ<0
exp(−θv)𝔼tr exp(θΣT)
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Attempt 1: Matrix Chernoff
❖ In the scalar case, we were able to bound for , 

.

θ < 0

𝔼 exp(θ
T−1

∑
i=0

x2
i ) ≤

1
(1 − 2σ2θ)T/2

❖ The matrix version is to bound . 𝔼tr exp(θΣT)

❖ The difficulty is that  for 
matrices, so the scalar proof does not go through. 

exp(A + B) ≠ exp(A)exp(B)
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Attempt 2: Scalar projections
❖ To avoid matrix issues, we can consider the scalar process 

 for a fixed .
T−1

∑
i=0

⟨v, xi⟩2 v ∈ 𝒮n−1

❖
We can then use scalar analysis to lower bound  for 

each fixed .

T−1

∑
i=0

⟨v, xi⟩2

v

❖
But . How do you pass to 

uniformly on ?

λmin(
T−1

∑
i=0

xix𝖳
i ) = inf

∥v∥=1

T−1

∑
i=0

⟨v, xi⟩2

𝒮n−1
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Attempt 2: Scalar projections
❖ Naive covering argument:  

.

λmin(
T−1

∑
i=0

xix𝖳
i ) = inf

∥v∥=1

T−1

∑
i=0

⟨v, xi⟩2

≥ min
v∈N(ε)

T−1

∑
i=0

⟨v, xi⟩2 − 2ε∥
T−1

∑
i=0

xix𝖳
i ∥



Attempt 2: Scalar projections
❖ Naive covering argument:  

.

λmin(
T−1

∑
i=0

xix𝖳
i ) = inf

∥v∥=1

T−1

∑
i=0

⟨v, xi⟩2

≥ min
v∈N(ε)

T−1

∑
i=0

⟨v, xi⟩2 − 2ε∥
T−1

∑
i=0

xix𝖳
i ∥

❖
But this requires upper bound on , which is very 

unsatisfying! (nevertheless this does work in the stable case).

∥
T−1

∑
i=0

xix𝖳
i ∥
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Stable case
❖ [Simchowitz et al. 19]: If , then with probability 

at least : 

                         .

ρ(A) < 1
1 − δ

∥ ̂AT − A∥ ≲
n log(n/δ)
Tλmin(Σ∞)

❖ Here,  is the stationary covariance:  
                           .

Σ∞
AΣ∞A𝖳 − Σ∞ + σ2I = 0
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Marginally stable case
❖ [Simchowitz et al. 19]: In the special case when  

with  orthogonal, then with probability : 

                            .

A = O
O 1 − δ

∥ ̂AT − A∥ ≲
n log(n/δ)

T



“Explosive” case
❖ [Sarkar and Rakhlin 19]: If  for all , then with 

probability at least : 
                               .

|λi | > 1 i
1 − δ

∥ ̂AT − A∥ ≲ ∥A−T∥/δ
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