Concentration Inequalities for System Identification

Stephen Tu

Google Brain Robotics
CDC 2019 Tutorial

Problem statement

Problem statement

* Given input/output access to $x_{t+1}=A x_{t}+B u_{t}+w_{t}$.

Problem statement

* Given input/output access to $x_{t+1}=A x_{t}+B u_{t}+w_{t}$.
* Assume $w_{t} \sim \mathscr{N}\left(0, \sigma^{2} I\right)$.

Problem statement

* Given input/output access to $x_{t+1}=A x_{t}+B u_{t}+w_{t}$. - Assume $w_{t} \sim \mathscr{N}\left(0, \sigma^{2} I\right)$.
* Goal is to recover (A, B) given $\mathscr{D}=\left\{\left(x_{t}, u_{t}, x_{t+1}\right)\right\}_{t=0}^{T-1}$.

Problem statement

* Given input/output access to $x_{t+1}=A x_{t}+B u_{t}+w_{t}$.

$$
\text { Assume } w_{t} \sim \mathscr{N}\left(0, \sigma^{2} I\right)
$$

* Goal is to recover (A, B) given $\mathscr{D}=\left\{\left(x_{t}, u_{t}, x_{t+1}\right)\right\}_{t=0}^{T-1}$.
- Want bounds on estimators (\hat{A}, \hat{B}) of the form:

$$
\begin{aligned}
& \mathbb{P}(\|\hat{A}-A\| \geq \varepsilon) \leq \delta, \\
& \mathbb{P}(\|\hat{B}-B\| \geq \varepsilon) \leq \delta
\end{aligned}
$$

Least-squares estimator

Least-squares estimator

* Basic least-squares estimator:

$$
(\hat{A}, \hat{B})=\arg \min _{A, B} \frac{1}{2} \sum_{i=0}^{T-1}\left\|x_{i+1}-A x_{i}-B u_{i}\right\|^{2}
$$

Least-squares estimator

* Basic least-squares estimator:

$$
(\hat{A}, \hat{B})=\arg \min _{A, B} \frac{1}{2} \sum_{i=0}^{T-1}\left\|x_{i+1}-A x_{i}-B u_{i}\right\|^{2}
$$

* Has closed-form solution:

$$
(\hat{A}, \hat{B})=\left(\sum_{i=0}^{t-1} x_{i+1} z_{i}^{\top}\right)\left(\sum_{i=0}^{t-1} z_{i} z_{i}^{\top}\right)^{-1}, z_{i}=\left[\begin{array}{l}
x_{i} \\
u_{i}
\end{array}\right]
$$

What do we know about LS?

What do we know about LS?

* Asymptotics of the least-squares estimator are well understood (in both stable / unstable case).

What do we know about LS?

* Asymptotics of the least-squares estimator are well understood (in both stable / unstable case).
* For simplicity, let us assume scalar autonomous system:

$$
x_{t+1}=a x_{t}+w_{t}
$$

What do we know about LS?

* Asymptotics of the least-squares estimator are well understood (in both stable / unstable case).
* For simplicity, let us assume scalar autonomous system:

$$
x_{t+1}=a x_{t}+w_{t}
$$

* Then from [Mann and Wald 1943, White 1958], we have a CLT:

$$
\begin{aligned}
\sqrt{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d} \mathcal{N}\left(0,1-a^{2}\right) \text { if }|a|<1, \\
T\left(\hat{a}_{T}-a\right. & \xrightarrow{d} \Phi \text { if }|a|=1, \\
|a|^{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d}\left(a^{2}-1\right) \Psi \text { if }|a|>1
\end{aligned}
$$

What do we know about LS?

* Asymptotics of the least-squares estimator are well understood (in both stable / unstable case).
* For simplicity, let us assume scalar autonomous system:

$$
x_{t+1}=a x_{t}+w_{t}
$$

* Then from [Mann and Wald 1943, White 1958], we have a CLT:

$$
\begin{aligned}
\sqrt{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d} \mathcal{N}\left(0,1-a^{2}\right) \text { if }|a|<1, \\
T\left(\hat{a}_{T}-a\right) & \xrightarrow{d} \Phi \text { if }|a|=1, \\
|a|^{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d}\left(a^{2}-1\right) \Psi \text { if }|a|>1
\end{aligned}
$$

* Φ is a non-standard distribution, Ψ is standard Cauchy.

What do we know about LS?

What do we know about LS?

* CLT:

$$
\begin{aligned}
& \sqrt{T}\left(\hat{a}_{T}-a\right) \xrightarrow{d} \mathcal{N}\left(0,1-a^{2}\right) \text { if }|a|<1 \\
& \quad T\left(\hat{a}_{T}-a\right) \xrightarrow{d} \Phi \text { if }|a|=1 \\
& |a|^{T}\left(\hat{a}_{T}-a\right) \xrightarrow{d}\left(a^{2}-1\right) \Psi \text { if }|a|>1
\end{aligned}
$$

What do we know about LS?

* CLT:

$$
\begin{aligned}
\sqrt{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d} \mathscr{N}\left(0,1-a^{2}\right) \text { if }|a|<1, \\
T\left(\hat{a}_{T}-a\right) & \xrightarrow{d} \Phi \text { if }|a|=1, \\
|a|^{T}\left(\hat{a}_{T}-a\right) & \xrightarrow{d}\left(a^{2}-1\right) \Psi \text { if }|a|>1
\end{aligned}
$$

* Therefore, as a becomes more "explosive", estimation becomes easier!

Beyond asymptotics

Beyond asymptotics

* Can we prove finite-time (non-asymptotic) rates in the scalar case?

Beyond asymptotics

* Can we prove finite-time (non-asymptotic) rates in the scalar case?
* Can we generalize to the vector case?

Roadmap

Roadmap

* Proof sketch of autonomous scalar case.

Roadmap

* Proof sketch of autonomous scalar case.
* Discuss why vector case is a non-trivial extension.

Roadmap

* Proof sketch of autonomous scalar case.
* Discuss why vector case is a non-trivial extension.
* Discuss state-of-the-art results in the vector case.

Scalar case setup

Scalar case setup

* Dynamics are $x_{t+1}=a x_{t}+w_{t}$.

Scalar case setup

* Dynamics are $x_{t+1}=a x_{t}+w_{t}$.

LS estimator simplifies to $\hat{a}_{t}=\frac{\sum_{i=0}^{t-1} x_{i} x_{i+1}}{\sum_{i=0}^{t-1} x_{i}^{2}}$.

Scalar case setup

* Dynamics are $x_{t+1}=a x_{t}+w_{t}$.

LS estimator simplifies to $\hat{a}_{t}=\frac{\sum_{i=0}^{t-1} x_{i} x_{i+1}}{\sum_{i=0}^{t-1} x_{i}^{2}}$.

* Error is therefore:

$$
e_{t}:=a_{t}-a=\frac{\sum_{i=0}^{t-1} x_{i} w_{i}}{\sum_{i=0}^{t-1} x_{i}^{2}}
$$

Key scalar martingale

Key scalar martingale

. Define $M_{t}:=\sum_{i=0}^{t-1} x_{i} w_{i}$ with $M_{0}=0$

Key scalar martingale

* Define $M_{t}:=\sum_{i=0}^{t-1} x_{i} w_{i}$ with $M_{0}=0$.
* Define the filtration $\mathscr{F}_{t}:=\sigma\left(w_{0}, \ldots, w_{t-1}\right)$.

Key scalar martingale

* Define $M_{t}:=\sum_{i=0}^{t-1} x_{i} w_{i}$ with $M_{0}=0$.
* Define the filtration $\mathscr{F}_{t}:=\sigma\left(w_{0}, \ldots, w_{t-1}\right)$.
* $\left(x_{0}, \ldots, x_{t}, M_{t}\right)$ are \mathscr{F}_{t}-measurable.

Key scalar martingale

* Define $M_{t}:=\sum_{i=0}^{t-1} x_{i} w_{i}$ with $M_{0}=0$.
* Define the filtration $\mathscr{F}_{t}:=\sigma\left(w_{0}, \ldots, w_{t-1}\right)$.
* $\left(x_{0}, \ldots, x_{t}, M_{t}\right)$ are \mathscr{F}_{t}-measurable.
* Furthermore, M_{t} is a martingale since:

$$
\begin{aligned}
\mathbb{E}\left[M_{t+1} \mid \mathscr{F}_{t}\right] & =\mathbb{E}\left[M_{t} \mid \mathscr{F}_{t}\right]+\mathbb{E}\left[x_{t} w_{t} \mid \mathscr{F}_{t}\right] \\
& =M_{t}+x_{t} \mathbb{E}\left[w_{t} \mid \mathscr{F}_{t}\right] \\
& =M_{t}
\end{aligned}
$$

Key scalar martingale

Key scalar martingale

* Next, we define the quadratic variation $\langle M\rangle_{t}$ as:

$$
\langle M\rangle_{t}:=\sum_{i=0}^{t-1} \mathbb{E}\left[\left(M_{i+1}-M_{i}\right)^{2} \mid \mathscr{F}_{i}\right]
$$

Key scalar martingale

* Next, we define the quadratic variation $\langle M\rangle_{t}$ as:

$$
\langle M\rangle_{t}:=\sum_{i=0}^{t-1} \mathbb{E}\left[\left(M_{i+1}-M_{i}\right)^{2} \mid \mathscr{F}_{i}\right]
$$

A quick computation shows that $\langle M\rangle_{t}=\sigma^{2} \sum_{i=0}^{t-1} x_{i}^{2}$.

Key scalar martingale

* Next, we define the quadratic variation $\langle M\rangle_{t}$ as:

$$
\langle M\rangle_{t}:=\sum_{i=0}^{t-1} \mathbb{E}\left[\left(M_{i+1}-M_{i}\right)^{2} \mid \mathscr{F}_{i}\right]
$$

A quick computation shows that $\langle M\rangle_{t}=\sigma^{2} \sum_{i=0}^{t-1} x_{i}^{2}$.

* Therefore, we can write:

$$
e_{t}=\frac{\sum_{i=0}^{t-1} x_{i} w_{i}}{\sum_{i=0}^{t-1} x_{i}^{2}}=\sigma^{2} \frac{M_{t}}{\langle M\rangle_{t}}
$$

Self-normalized processes

Self-normalized processes

. It turns out that the quantity $\frac{M_{t}}{\langle M\rangle_{t}}$ is well-studied in probability theory.

Self-normalized processes

*. It turns out that the quantity $\frac{M_{t}}{\langle M\rangle_{t}}$ is well-studied in probability theory.

* Is often referred to as a self-normalized process.

Self-normalized processes

*. It turns out that the quantity $\frac{M_{t}}{\langle M\rangle_{t}}$ is well-studied in probability theory.

* Is often referred to as a self-normalized process.
* A rich body of concentration inequalities to draw from that are of the form:

$$
\mathbb{P}\left(M_{t} \geq \alpha\langle M\rangle_{t}\right) \leq \ldots
$$

Self-normalized inequality

Self-normalized inequality

* One concrete result from [Bercu and Touati 08]:

$$
\mathbb{P}\left(M_{n} \geq \alpha\langle M\rangle_{n}\right) \leq \inf _{p \geq 1}\left(\mathbb{E}\left[\exp \left(-(p-1) \frac{\alpha^{2}}{2}\langle M\rangle_{n}\right)\right]\right)^{1 / p}
$$

Self-normalized inequality

* One concrete result from [Bercu and Touati 08]:

Sanity check: if $M_{n}=\sum^{n} w_{i}$ with $w_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then this
reduces to $\mathbb{P}\left(\sum_{i=1}^{n} w_{i} \geq t\right) \leq \exp \left(-t^{2} /\left(2 n \sigma^{2}\right)\right)$.

Bounding moment generating function

Bounding moment generating function

* The next step is to control:

$$
\mathbb{E} \exp \left(\theta \sum_{i=0}^{T-1} x_{i}^{2}\right), \theta<0
$$

Bounding moment generating function

* The next step is to control:

$$
\mathbb{E} \exp \left(\theta \sum_{i=0}^{T-1} x_{i}^{2}\right), \theta<0
$$

* By tower property of expectations:

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\theta \sum_{i=0}^{T-2} x_{i}^{2}\right) \mathbb{E}\left[\exp \left(\theta x_{T-1}^{2}\right) \mid \mathscr{F}_{T-2}\right]\right] \\
& =\mathbb{E}\left[\exp \left(\theta \sum_{i=0}^{T-2} x_{i}^{2}\right) \mathbb{E}\left[\exp \left(\theta\left(a x_{T-2}+w_{T-1}\right)^{2}\right) \mid \mathscr{F}_{T-2}\right]\right]
\end{aligned}
$$

An elementary MGF bound

An elementary MGF bound

* An elementary result states that for $\theta<0$ and μ fixed,

$$
\mathbb{E} \exp \left(\theta(\mu+w)^{2}\right) \leq \frac{1}{\sqrt{1-2 \sigma^{2} \theta}}, w \sim \mathscr{N}\left(0, \sigma^{2}\right)
$$

An elementary MGF bound

* An elementary result states that for $\theta<0$ and μ fixed,

$$
\mathbb{E} \exp \left(\theta(\mu+w)^{2}\right) \leq \frac{1}{\sqrt{1-2 \sigma^{2} \theta}}, w \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

* Therefore:

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\theta \sum_{i=0}^{T-2} x_{i}^{2}\right) \mathbb{E}\left[\exp \left(\theta x_{T-1}^{2}\right) \mid \mathscr{F}_{T-2}\right]\right. & =\mathbb{E}\left[\exp \left(\theta \sum_{i=0}^{T-2} x_{i}^{2}\right) \mathbb{E}\left[\exp \left(\theta\left(a x_{T-2}+w_{T-1}\right)^{2}\right) \mid \mathscr{F}_{T-2}\right]\right] \\
& \leq \mathbb{E} \exp \left(\theta \sum_{i=0}^{T-2} x_{i}^{2}\right) \frac{1}{\sqrt{1-2 \sigma^{2} \theta}} \\
& \leq \ldots \\
& \leq \frac{1}{\left(1-2 \sigma^{2} \theta\right)^{T / 2}}
\end{aligned}
$$

Putting it together

Putting it together

* Recall the inequality from [Bercu and Touati 08]:

$$
\mathbb{P}\left(e_{T} \geq v\right) \leq \inf _{p \geq 1}\left(\mathbb{E}\left[\exp \left(-(p-1) \frac{v^{2}}{2 \sigma^{2}} \sum_{i=0}^{T-1} x_{i}^{2}\right)\right]\right)^{1 / p}
$$

Putting it together

* Recall the inequality from [Bercu and Touati 08]:
$\mathbb{P}\left(e_{T} \geq v\right) \leq \inf _{p \geq 1}\left(\mathbb{E}\left[\exp \left(-(p-1) \frac{v^{2}}{2 \sigma^{2}} \sum_{i=0}^{T-1} x_{i}^{2}\right)\right]\right)^{1 / p}$.
* Now setting $\theta=-(p-1) \nu^{2} /\left(2 \sigma^{2}\right)$,

$$
\mathbb{P}\left(e_{T} \geq v\right) \leq \inf _{p \geq 1}\left[\frac{1}{1+(p-1) v^{2}}\right]^{T / 2 p} \leq\left[\frac{1}{1+v^{2}}\right]^{T / 4}
$$

Putting it together

Putting it together

* Repeating the same argument for $-e_{T}$, we obtain our first concentration inequality by a union bound:

$$
\mathbb{P}\left(\left|e_{T}\right| \geq v\right) \leq 2\left[\frac{1}{1+v^{2}}\right]^{T / 4}
$$

Putting it together

* Repeating the same argument for $-e_{T}$, we obtain our first concentration inequality by a union bound:

$$
\mathbb{P}\left(\left|e_{T}\right| \geq v\right) \leq 2\left[\frac{1}{1+v^{2}}\right]^{T / 4}
$$

* Inverting this bound for large T, this states that with probability at least $1-\delta$, we have roughly:

$$
\left|e_{T}\right| \lesssim \sqrt{\frac{1}{T} \log (1 / \delta)}
$$

Drawbacks of bound

Drawbacks of bound

* Note that this bound we derived is not sharp!

Drawbacks of bound

* Note that this bound we derived is not sharp!
* First, consider stable $|a|<1$. From CLT we know that $\sqrt{T} e_{T} \xrightarrow{d} \mathcal{N}\left(0,1-a^{2}\right)$. Hence a more correct bound would have the form $\left|e_{T}\right| \asymp \sqrt{\frac{1-a^{2}}{T}}$.

Drawbacks of bound

* Note that this bound we derived is not sharp!
* First, consider stable $|a|<1$. From CLT we know that $\sqrt{T} e_{T} \xrightarrow{d} \mathcal{N}\left(0,1-a^{2}\right)$. Hence a more correct bound would
have the form $\left|e_{T}\right| \asymp \sqrt{\frac{1-a^{2}}{T}}$.
- Situation is even worse for unstable $|a|>1$, where we expect exponential rates: $\left|e_{T}\right| \asymp \frac{a^{2}-1}{|a|^{T}}$.

Sharpening the scalar bound

* The bound can be sharpened by a more refined MGF analysis- see Theorem B. 1 from [Simchowitz et al. 19].

Difficulties of vector case

Vector case setup

Vector case setup

* Our setup is now $x_{t+1}=A x_{t}+w_{t}$.

Vector case setup

* Our setup is now $x_{t+1}=A x_{t}+w_{t}$.
* The error term is:

$$
E_{T}:=\left(\sum_{i=0}^{T-1} w_{i} x_{i}^{\top}\right)\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)^{-1}
$$

Vector case setup

* Our setup is now $x_{t+1}=A x_{t}+w_{t}$.
* The error term is:

$$
E_{T}:=\left(\sum_{i=0}^{T-1} w_{i} x_{i}^{\top}\right)\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)^{-1}
$$

* We consider the following decomposition:

$$
\left\|E_{T}\right\| \leq \frac{\left\|\left(\sum_{i=0}^{T-1} w_{i} x_{i}^{\top}\right)\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)^{-1 / 2}\right\|}{\sqrt{\lambda_{\min }\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)}}
$$

Vector case setup

Vector case setup

* The term $\left\|\left(\sum_{i=0}^{T-1} w_{i} x_{i}^{\top}\right)\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)^{-1 / 2}\right\|$ is a vectorvalued self-normalized martingale. For stable A, also not too difficult to bound [Abbasi-Yadkori et al. 11].

Vector case setup

* The term $\left\|\left(\sum_{i=0}^{T-1} w_{i} x_{i}^{\top}\right)\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)^{-1 / 2}\right\|$ is a vectorvalued self-normalized martingale. For stable A, also not too difficult to bound [Abbasi-Yadkori et al. 11].
*The tricky part is lower bounding $\lambda_{\min }\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)$.

Attempt 1: Matrix Chernoff

Attempt 1: Matrix Chernoff

$$
\begin{aligned}
& \text { Define } \Sigma_{T}:=\sum_{i=0}^{T-1} x_{i} x_{i}^{\top} \text {. For } \theta>0 \text { : } \\
& \qquad \begin{aligned}
\mathbb{P}\left(\lambda_{\min }\left(\Sigma_{T}\right) \leq v\right) & =\mathbb{P}\left(-\theta \lambda_{\min }\left(\Sigma_{T}\right) \geq-\theta v\right) \\
& =\mathbb{P}\left(\exp \left(-\theta \lambda_{\min }\left(\Sigma_{T}\right)\right) \geq \exp (-\theta v)\right) \\
& \leq \exp (\theta v) \mathbb{E} \exp \left(-\theta \lambda_{\min }\left(\Sigma_{T}\right)\right) \\
& =\exp (\theta v) \mathbb{E} \exp \left(\lambda_{\max }\left(-\theta \Sigma_{T}\right)\right) \\
& =\exp (\theta v) \mathbb{E} \lambda_{\max }\left(\exp \left(-\theta \Sigma_{T}\right)\right) \\
& \leq \exp (\theta v) \mathbb{E} \operatorname{tr} \exp \left(-\theta \Sigma_{T}\right)
\end{aligned}
\end{aligned}
$$

Attempt 1: Matrix Chernoff

*.Define $\Sigma_{T}:=\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}$. For $\theta>0$:

$$
\begin{aligned}
\mathbb{P}\left(\lambda_{\min }\left(\Sigma_{T}\right) \leq v\right) & =\mathbb{P}\left(-\theta \lambda_{\min }\left(\Sigma_{T}\right) \geq-\theta v\right) \\
& =\mathbb{P}\left(\exp \left(-\theta \lambda_{\min }\left(\Sigma_{T}\right)\right) \geq \exp (-\theta v)\right) \\
& \leq \exp (\theta v) \mathbb{E} \exp \left(-\theta \lambda_{\min }\left(\Sigma_{T}\right)\right) \\
& =\exp (\theta v) \mathbb{E} \exp \left(\lambda_{\max }\left(-\theta \Sigma_{T}\right)\right) \\
& =\exp (\theta v) \mathbb{E} \lambda_{\max }\left(\exp \left(-\theta \Sigma_{T}\right)\right) \\
& \leq \exp (\theta v) \mathbb{E} \operatorname{tr} \exp \left(-\theta \Sigma_{T}\right)
\end{aligned} .
$$

* Therefore:

$$
\mathbb{P}\left(\lambda_{\min }\left(\Sigma_{T}\right) \leq v\right) \leq \inf _{\theta<0} \exp (-\theta v) \mathbb{E} \operatorname{tr} \exp \left(\theta \Sigma_{T}\right)
$$

Attempt 1: Matrix Chernoff

Attempt 1: Matrix Chernoff

* In the scalar case, we were able to bound for $\theta<0$,
$\mathbb{E} \exp \left(\theta \sum_{i=0}^{T-1} x_{i}^{2}\right) \leq \frac{1}{\left(1-2 \sigma^{2} \theta\right)^{T / 2}}$.

Attempt 1: Matrix Chernoff

* In the scalar case, we were able to bound for $\theta<0$, $\mathbb{E} \exp \left(\theta \sum_{i=0}^{T-1} x_{i}^{2}\right) \leq \frac{1}{\left(1-2 \sigma^{2} \theta\right)^{T / 2}}$.
* The matrix version is to bound $\mathbb{E} \operatorname{tr} \exp \left(\theta \Sigma_{T}\right)$.

Attempt 1: Matrix Chernoff

* In the scalar case, we were able to bound for $\theta<0$, $\mathbb{E} \exp \left(\theta \sum_{i=0}^{T-1} x_{i}^{2}\right) \leq \frac{1}{\left(1-2 \sigma^{2} \theta\right)^{T / 2}}$.
* The matrix version is to bound $\mathbb{E} \operatorname{tr} \exp \left(\theta \Sigma_{T}\right)$.
* The difficulty is that $\exp (A+B) \neq \exp (A) \exp (B)$ for matrices, so the scalar proof does not go through.

Attempt 2: Scalar projections

Attempt 2: Scalar projections

* To avoid matrix issues, we can consider the scalar process $T-1$
$\sum_{i=0}\left\langle v, x_{i}\right\rangle^{2}$ for a fixed $v \in \mathcal{S}^{n-1}$.

Attempt 2: Scalar projections

* To avoid matrix issues, we can consider the scalar process ${ }^{T-1}$ $\sum_{i=0}\left\langle v, x_{i}\right\rangle^{2}$ for a fixed $v \in \mathcal{S}^{n-1}$.
We can then use scalar analysis to lower bound $\sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2}$ for each fixed v.

Attempt 2: Scalar projections

* To avoid matrix issues, we can consider the scalar process ${ }^{T-1}$ $\sum_{i=0}\left\langle v, x_{i}\right\rangle^{2}$ for a fixed $v \in \delta^{n-1}$.
We can then use scalar analysis to lower bound $\sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2}$ for each fixed v.
- But $\lambda_{\min }\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right)=\inf _{\|v\|=1} \sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2}$. How do you pass to uniformly on \mathcal{S}^{n-1} ?

Attempt 2: Scalar projections

Attempt 2: Scalar projections

* Naive covering argument:

$$
\begin{aligned}
\lambda_{\min }\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right) & =\inf _{\|v\|=1} \sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2} \\
& \geq \min _{v \in N(\varepsilon)} \sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2}-2 \varepsilon\left\|\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right\|
\end{aligned}
$$

Attempt 2: Scalar projections

* Naive covering argument:

$$
\begin{aligned}
\lambda_{\min }\left(\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right) & =\inf _{\|v\|=1} \sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2} \\
& \geq \min _{v \in N(\varepsilon)} \sum_{i=0}^{T-1}\left\langle v, x_{i}\right\rangle^{2}-2 \varepsilon\left\|\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right\|
\end{aligned}
$$

But this requires upper bound on $\left\|\sum_{i=0}^{T-1} x_{i} x_{i}^{\top}\right\|$, which is very unsatisfying! (nevertheless this does work in the stable case).

State of the art vector results

Stable case

Stable case

* [Simchowitz et al. 19]: If $\rho(A)<1$, then with probability at least $1-\delta$:

$$
\left\|\hat{A}_{T}-A\right\| \lesssim \sqrt{\frac{n \log (n / \delta)}{T \lambda_{\min }\left(\Sigma_{\infty}\right)}}
$$

Stable case

* [Simchowitz et al. 19]: If $\rho(A)<1$, then with probability at least $1-\delta$:

$$
\left\|\hat{A}_{T}-A\right\| \lesssim \sqrt{\frac{n \log (n / \delta)}{T \lambda_{\min }\left(\Sigma_{\infty}\right)}}
$$

* Here, Σ_{∞} is the stationary covariance:

$$
A \Sigma_{\infty} A^{\top}-\Sigma_{\infty}+\sigma^{2} I=0
$$

Marginally stable case

Marginally stable case

* [Simchowitz et al. 19]: In the special case when $A=O$ with O orthogonal, then with probability $1-\delta$:

$$
\left\|\hat{A}_{T}-A\right\| \lesssim \frac{n \log (n / \delta)}{T}
$$

"Explosive" case

* [Sarkar and Rakhlin 19]: If $\left|\lambda_{i}\right|>1$ for all i, then with probability at least $1-\delta$:

$$
\left\|\hat{A}_{T}-A\right\| \lesssim\left\|A^{-T}\right\| / \delta
$$

References

* Simchowitz et al. Learning Without Mixing: Towards a Sharp Analysis of Linear System Identification. Conference on Learning Theory. 2019.
* Sarkar and Rakhlin. Near optimal finite time identification of arbitrary linear dynamical systems. ICML 2019.
* Rantzer. Concentration Bounds for Single Parameter Adaptive Control. ACC 2018.
* Abbasi-Yadkori et al. Online Least Squares Estimation with Self-Normalized Processes: An Application to Bandit Problems. Conference on Learning Theory 2011.
* Bercu and Touati. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18(5). 2008.
- Mann and Wald. On the Statistical Treatment of Linear Stochastic Difference Equations. Econometrica 11(3-4). 1943.
* White. The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case. Ann. Math. Statist. 29(4). 1958.

