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Exploration/Exploitation

A central problem in reinforcement learning:

Exploitation: To repeat decisions that have worked well so far

Exploration: To try novel decisions, hoping to gain even greater rewards

Studied theoretically in the context of multi-armed bandits.

Heuristic: “Optimism in the face of uncertainty”.

Mostly statistical models, but growing interest in “adversarial learning”,
addressing worst case scenarios.
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Stochastic Formulations of Dual Control

In the control literature, the term “dual control” was introduced by
Feldbaum in 1960 as an optimization approach to adaptive control.

Several attempts to address the problem were made during the 1960-80s,
since lack of excitation was a central issue in the study of adaptive control.

In particular, consider minimization of the state variance in

yt+1 = yt + but + wt

where wt is a sequence of zero mean independent random variables.

In [Åström/Helmersson, 1986] the constant b was normally distributed.
In [Bernhardsson, 1989] two values of the constant b had given probabilities.

The problems were solved numerically by dynamic programming. In both
cases, the optimal controller activates u when the uncertainty in b is big.
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[Åström/Helmersson, 1986]

Let the parameter b be moving in a Brownian motion.
Exploration will be activated when there is a sign change:
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Limitations of the Stochastic Approach

The stochastic formulations of dual control have severe limitations:

Prohibitive complexity of the dynamic programming approach
Poor robustness to structural assumptions (compare H2 vs. H∞)

Is there a counter-part to “adversarial learning”?

Dual controller

x+ = Ax+ Bu+ w �
�

-

�(x, u) w

u
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Classical Linear Quadratic Optimal Control

Let Q, R 0 0 and introduce the notation pxp2Q = xsQx.

Consider the problem to find a control law µ that attains the minimum

min
µ

∞∑
t=0

(
pxtp2Q + putp2R

)

when xt, ut are generated according to

xt+1 = Axt + But t ≥ 0
ut = µt(x0, . . . , xt, u0, . . . , ut−1).

The problem is solved by the state feedback controller u = −Kx defined
by the minimizing u in the Riccati equation

pxp2P = min
u

{
pxp2Q + pup2R + pAx+ Bup2P

}
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Game Formulation of H∞ Control

Consider the problem to find a control law µ that attains the minimum

min
µ

max
w

∞∑
t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)

when xt, ut are generated according to

xt+1 = Axt + But + wt t ≥ 0
ut = µt(x0, . . . , xt, u0, . . . , ut−1).

Minimizing controller

x+ = Ax+ Bu+ w�
�

-

�(x, u) w

u
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Game Formulation of H∞ Control

Consider the problem to find a control law µ that attains the minimum

min
µ

max
w

∞∑
t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)

when xt, ut are generated according to

xt+1 = Axt + But + wt t ≥ 0
ut = µt(x0, . . . , xt, u0, . . . , ut−1).

The problem is solved by the state feedback controller u = −Kx defined
by the minimizing u in the Riccati equation

pxp2P = min
u

max
w

{
pxp2Q + pup2R −γ 2pwp2 + pAx+ Bu+ wp2P

}
The parameter γ trades “robustness” against “performance”.
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Minimax Adaptive Control

Let Q, R 0 0. Given (A1, B1), . . . , (AN , BN) and a number γ > 0,
find a control law µ that attains the infimum

inf
µ

sup
x0,w,i

∞∑
t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)

when px0p = 1 and supremum is taken over all solutions to

xt+1 = Aixt + Biut + wt t ≥ 0
ut = µt(x0, . . . , xt, u0, . . . , ut−1).

If N = 1, then this gives standard H∞ control.
γ quantifies robustness to unmodeled dynamics.
In general, nonlinear feedback with memory is needed.
Early work by [Didinsky/Basar, CDC 1994]
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Equivalent Dynamic Game

Given Q 0 0, R 0 0, γ > 0, find a control law η that attains the infimum

inf
η

sup
x0,v,T

[
−γ 2 min

i

∥∥∥ [I Ai Bi
]∥∥∥2

ZT+1
+

T∑
t=0

(
pxtp2Q + putp2R

) ]

when px0p = 1 and x, u, Z are generated from x0 and v according to
xt+1 = vt

Zt+1 = Zt +


−vtxt
ut




−vtxt
ut



s

, Z0 = 0

and the control law ut = η(xt, Zt).

Remark:
Uncertain (Ai, Bi) appears only in terminal cost, not in dynamics
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Dynamic Programming Approach

The dynamic game has a finite value if and only if the Bellman equation

V∗(x, Z) =min
u

max
v

pxp2Q + pup2R + V∗

v, Z + [
−v
x
u

][
−v
x
u

]s
has a solution V∗ satisfying

−γ 2 min
i
q
[
I Ai Bi

]
q2
Z ≤ V∗(x, Z) ≤ γ 2pxp2

for all Z 4 0 and x ∈ Rn.

The value of the game is V∗(x0, 0).
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Example 1: Scalar System with Unknown Input Sign

inf
µ

sup
w,i

∞∑
t=0

(
x2
t + u2

t −γ 2w2
t
)

where xt+1 = 1.5xt + but + wt b ∈ {−1, 1}
ut = µt(x0, . . . , xt, u0, . . . , ut−1) t ≥ 0.

Dynamic programming:

V∗(x, Z) = min
u

max
v

{
x2 + u2 + V∗

(
v, Z +

[
1.5x− v

u

] [
1.5x− v

u

]s)}

−γ 2 min
b=±1

q
[
1 b

]
q2
Z ≤ V∗(x, Z) ≤ γ 2pxp2

Optimal control law for γ = 6.72: Use certainty equivalence!

ut =
{
+0.63xt if

∑t−1
k=0 uk(xk+1 − 1.5xk) ≤ 0

−0.63xt if
∑t−1

k=0 uk(xk+1 − 1.5xk) > 0
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Example 2: Scalar System with Unknown Input Sign

inf
µ

sup
w,i

∞∑
t=0

(
x2
t + u2

t −γ 2w2
t
)

where xt+1 = 1.5xt + but + wt b ∈ {−1, 1}
ut = µt(x0, . . . , xt, u0, . . . , ut−1) t ≥ 0.

Optimal control law for γ = 6.72: Use certainty equivalence!

ut =
{
+0.63xt if

∑t−1
k=0 uk(xk+1 − 1.5xk) ≤ 0

−0.63xt if
∑t−1

k=0 uk(xk+1 − 1.5xk) > 0

Optimal control law for γ = 5.8: Active exploration when uncertain.

ut =


+0.63xt if

∑t−1
k=0 uk(xk+1 − 1.5xk) ∈ (−∞,−x2

t ]

+1.3xt if
∑t−1

k=0 uk(xk+1 − 1.5xk) ∈ (−x2
t , 0]

−1.3xt if
∑t−1

k=0 uk(xk+1 − 1.5xk) ∈ (0, x2
t ]

−0.63xt if
∑t−1

k=0 uk(xk+1 − 1.5xk) ∈ (x2
t ,∞)
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The Optimal Cost for Example 2

V∗
(

1,
[
z z
z z

])

V∗(x, Z) = max
{

16.13x2 − 5.82 tr(Z) , 1.63x2 − 5.82 min
b=±1

∥∥[1 b
]∥∥2

Z

}
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Example 3: Unknown Sign of State Dynamics

inf
µ

sup
w,i

∞∑
t=0

(
x2
t + u2

t −γ 2w2
t
)

where xt+1 = axt + ut + wt a ∈ {−1, 1}
ut = µt(x0, . . . , xt, u0, . . . , ut−1) t ≥ 0.

Dynamic programming:

V∗(x, Z) = min
u

max
v

{
x2 + u2 + V∗

(
v, Z +

[
u− v
x

] [
u− v
x

]s)}

−γ 2 min
a=±1

q
[
1 a

]
q2
Z ≤ V∗(x, Z) ≤ γ 2pxp2

Optimal control law for γ = 2.13:

ut = sat
(∑t−1

k=0(uk − xk+1)xk
x2
t

)
· 0.354xt
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The Optimal Cost for Example 3

V∗
(

1,
[
z z
z z

])

V∗
(
x,
[
z11 z12
z12 z22

])

=

{
1.74x2 − 4.52(z11 + z22 − 2pz12p) if z12 ≥ 0.46
3.82x2 − 4.52(z11 + z22) + 9.79z2

12 otherwise
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Higher Order Systems

inf
µ

sup
w,i

∞∑
t=0

(
pxtp2Q + putp2R −γ 2pwtp

2)
where xt+1 = iAxt + But + wt i ∈ {−1, 1}

ut = µt(x0, . . . , xt, u0, . . . , ut−1) t ≥ 0.

Dynamic programming:

V∗(x, Z) = min
u

max
v

{
pxp2Q + pup2R + V∗

(
v, Z +

[
Bu− v

x

] [
Bu− v

x

]s)}

−γ 2 min
i=±1

q
[
I iA

]
q2
Z ≤ V∗(x, Z) ≤ γ 2pxp2

Under general assumption, an optimal control law takes the form:

ut = sat
(∑t−1

k=0(Buk − xk+1)
sAxk

pxtp2T−P

)
· Kxt

where K, P, T are obtained from a Riccati equation.
Anders Rantzer Dual Control: Optimization Based Exploration/exploitation



Conclusions

Dual control problems can be stated in terms of stochastic optimal control,
but also as zero-sum dynamic games.

The latter has important advantages:

Robustness guarantees in presence of unmodelled dynamics
Explicit solutions to the Bellman equation, even for high order systems

First draft available on http://arxiv.org/abs/1912.03550.
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