
ESE 680-004: Learning and Control Fall 2019

Lecture 19: Q-learning for LQR
Lecturer: Nikolai Matni Scribe: Raphael Van Hoffelen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the previous lectures, we have talked about the model-based control approach of learned systems. But
what learning methods and algorithms can be used in a model-free control approach? In this lecture, we
will see how we can use reinforcement learning techniques such as Q-Learning , TD-Learning and Policy
Iteration for LQR problems.

1 Stochastic Dynamic Programming

Let’s consider the following dynamical system:

xt+1 = ft (xt, ut, wt) , t = 0, 1, . . . , N − 1

We denote the cost per stage by ct(xt, ut) and assume that xt ∈ Xt and ut ∈ Ut. Our task in this problem,
is to optimize over all polices π = {µ0, . . . , µN−1} such that ut = µk(xt) ∈ Ut.

We start by defining the expected cost incurred by a policy π starting at state x0 such that

Jπ(x0) = E

{
cN (xN) +

N−1∑
t=0

ct(xt, µt(xt))

}
,

where the expectation cost is taken over {wt, xt, µt}. We can now define a optimal policy π? that min-
imizes the cost function Jπ?(x0) for all π ∈ Π at state x0. In other words, π? can be define such that
Jπ?(x0) = minπ∈Π Jπ(x0). We will now denote this cost with J? and use J?(x0) as the optimal cost-to-go
function that uses the optimal policy π? at state x0.

Now that our system is set up, we will lay out the steps of the dynamic programming approach to solve
stochastic finite horizon problems and find the optimal policy π?.

• The first step consists to initialize our optimal cost function from the ”bottom up” such that J?N (xN) =
cN (xN) where cN (xN) is the cost of our system at the final state xN .

• We then iterate through all states in reverse order such that t = N − 1, N − 2, . . . , 1, 0. at each new
state xt, we can calculate the optimal cost function J?t (xt) by minimizing the expected sum of the cost
current state ct(xt, ut) with the optimal cost J?t+1(ft(xt, ut, wt) at time t+ 1 for all ut ∈ Ut. In other
words:

for t = N − 1, N − 2, . . . , 1, 0. let J?t (xt) = min
ut∈Ut

E
{
ct(xt, ut) + J?t+1(ft(xt, ut, wt))

}
(1)

• Finally if all optimal u?t = µ?t (xt) minimizes the right-hand-side of equation (1) for each state xt and
time t, then π? = {µ?0, . . . , µ?N−1} is optimal and J?0 (x0) is the optimal cost to go J?(x0).

1

Lecture 19: Q-learning for LQR 2

2 Approximate Dynamic Programming

There are 2 main implementation of the dynamic programming method described above.
The first implementation consists in computing the optimal cost-to-go functions J?k and policies µ?k ahead
of time and store them in look-up-tables. This puts all the compute power in advance and allows for a fast
inexpensive run time.
The second implementation describes a method to use in ”real-time”. It consists in computing the dynamic
programming recursion online using a 1-step look-ahead. By doing this you only need to compute the cost-
to-go J?t (xt) for the N states seen during execution.

Unfortunately, most real world applications requires the computation to be done in ”real-time” but the
second implementation discussed ends up being too computationally expensive. This is why approximation
techniques are usually used to trade off optimally for speed.
One common approach consists of conducting approximations in value space. This means that at any state
xt encountered at time t compute and apply the following equation:

µ̃(xt) ∈ arg min
ut∈Ut

E
{
ct(xt, ut) + J̃t+1(ft(xt, ut, wt))

}

3 Q-Functions or Q-Factors

Dynamic programming can also be defined using Q-factors (or Q-Value). A Q-Factor is define by a Q-
Function that takes in a state/action pair and calculates the expected sum of the current state/action cost
and optimal cost-to-go function J?t+1 at time t + 1. Each state has a Q-factor for each action that can be
taken at that state. We can therefore define the optimal Q-Factor with the following equation:

Q?t (xt, ut) = E
{
ct(xt, ut) + J?t+1(ft(xt, ut, wt))

}
(2)

Looking back at equation (1), we can see that equation (2) can substituted be in. We now have J?t (xt)
defined by Q?t (xt, ut). This gives us the following set of equations:

J?t (xt) = min
ut∈Ut

Q?t (xt, ut) (3)

with optimal policy µ?k defined as:
µ?k(xt) = arg min

ut∈Ut
Q?t (xt, ut) (4)

We can now use the Q-Factor dynamic programming algorithm to find Q?t (xt, ut).

• First initialize Q?N (xN , uN) = cN (xN) (Cost of the last state at t = N)

• then solve the backwards recursion define by this equation:

Q?t (xt, ut) = E
{
ct (xt, ut) + min

ut+≤Ut+1

Q?t+1 (ft (xt, ut, wt) , ut+1)

}
(5)

Lecture 19: Q-learning for LQR 3

4 Discounted Problems and TD-Learning

The problem with the methods defined earlier is that they do not work for infinite horizon problems. In
order to solve this issue with minimal technical overhead we can introduce a discounted cost γ ∈ [0, 1] in
our algorithms. this allows use to disregard state cost as t moves towards ∞. This is shown in the following
equation:

Jπ(x0) = E

{ ∞∑
t=0

γtc(xt, µ(xt))

}
(6)

Where the cost function c(ct, µ(xt)) converges to 0 exponentially with respect to γt as t moves towards ∞.

Now that we have a way to define infinite horizon problems for dynamic programming, we can use the
Temporal Difference (TD) learning to approximate the cost-to-go function from data. We will define Ĵπ(xt)
as the current estimate of the cost-to-go function at state xt. TD-learning proposes the following update
with α > 0:

Ĵπ(xt)← (1− α)Ĵπ(xt) + α
[
c(xt, µ(xt)) + γĴπ(xt+1)

]
(7)

5 Q-Learning: TD-Learning for Q-Factors

We now know how TD-Learning update works for the cost-to-go function, and we know how to define J?t (xt)
with respect to Q?t (xt, ut). The next step will be to introduce a discount cost in the equation (2) in order
for us to use TD-Learning with Q-Factors.

Similarly to how we did for equation (6), we can introduce a discounted cost γ ∈ [0, 1] in our equation
(2). By doing so we are left with the following equation:

Q?(x, u) = E
{
c(x, u) + γ min

u′∈U
Q?(f(x, u, w), u′)

}
(8)

We can now finally use the TD-Learning update with α > 0 to estimate the current Q-function:

Q̂(xt, ut)← (1− α)Q̂(xt, ut) + α

[
c(xt, ut) + γ min

u′∈U
Q̂(xt+1, u

′)

]
(9)

TD-Learning on cost-to-go functions and Q-functions are shown to converge in the tabular discounted
settings [1] [2]. But convergence and optimality proofs using the function approximations Ĵπ(xt) and Q̂(xt, ut)
harder to prove [3].

6 Adaptive LQR using Policy Iteration

The first convergence results for DP-based RL algorithms for continuous control problems was first proved
in the paper entitled ”Adaptive linear quadratic control using policy iteration” [2]. The paper does so by
using recursive least-square for Q-learning combined with policy iteration and strongly exploits the prior
knowledge that Q-functions are quadratic [1]. The results of the paper shows asymptotic convergence for
modern (non-asymptotic) treatment [2].

6.1 Problem Setup

Lets consider some system dynamics described by

xt+1 = Axt +But = f(xt, ut), ut = Kxt,

A+BK is stable with per-stage cost c(xt, ut) = x>t Sxt + u>t Rut.

Lecture 19: Q-learning for LQR 4

Using section 4 we can define the discounted cost-to-go function for control policy K beginning at time
t from state xt to be VK(xt) :=

∑∞
i=0 γ

ic(xt+i, ut+i) for γ ∈ [0, 1]. From control theory, we know that
VK(xt) = x>t PKxt for PK � 0.. We now denote K? as the optimal controller and P ? as the optimal cost
matrix. By substituting VK(xt) as our cost-to-go function in equation(8) we now have a new set of equations
to define our Q-Function in relation to our system dynamics set up:

QK(x, u) = c(x, u) + γVK(f(x, u)) (10)

QK (xt, ut) = c (xt, ut) + γQK (xt+1,Kxt+1) (11)

6.2 Exploiting Quadratic Structure

Q-Functions have a nice quadratic structure [2]. This enable us to simplify our problem by rewriting the the
Q-Function as

QK(x, u) = [x;u]>
[

QK(1, 1) QK(1, 2)
QK(1, 2)> QK(2, 2)

]
[x;u],

QK(1, 1) = S + γA>PKA
QK(1, 2) = γA>PKB
QK(2, 2) = R+ γB>PKB

(12)

It is easier now to take a standard policy iteration approach as defined in [1] to find an improved policy.
To do so we must first fix a policy Kk and cost-to-go function Jk where k denotes the Dynamic Programming
iterations. We then can find the improved policy of our system via the following recursive algorithm:

Kk+1x = arg min
u

[c(x, u) + γJK(f(x, u))] = arg min
u

QK(x, u) (13)

This leads us to set ∇uQK(x, u) = 0 and solve for u which yields the following equation:

u = −γ(R+ γB>PKkB)−1B>PKkAx =: Kk+1x (14)

Finally, via pattern matching we can conclude that:

Kk+1 = −QK(2, 2)−1QK(1, 2)> (15)

We can make few observations from the equations defined above. We can see that if we assume that we
begin at a stabilizing policy, then Kk+1 must also be stabilizing as the cost can only decrease by running
policy iteration. The leads to a new Q-function that can then be learned while repeating the process over.
This shows us that proving convergence is reduced to analyzing the direct estimation of Q-functions and
the convergence of adaptive policy iteration for LQR. Finally we also see that the discount factor changes
the traditional meaning of stability in control theory to finite cost. More work is therefore needed to ensure
actual stability of our dynamic system.

6.3 Direct Estimation of the Q-Function

As explained in section 6.2, Q-Factors are quadratic in [x;u]. This means that they can be made linear in
the right basis and therefore be reduced to a least-squares problem.

Let x̄ = [x2
1, . . . , x1xn, x

2
2, . . . , x2xn, . . . , x

2
n]> and define Θ(P) such that x>Px = x̄Θ(P). Note that Θ is

invertible when restricted to symmetric matrices. We can now rewrite equation (12) as:

QK(x, u) = [x;u]>QK [x;u] = [x;u]
>

Θ(QK) (16)

Consequently we can plug in this equation in equation (11) in order to get:

c(xt, ut) = QK(xt, ut)− γQK(xt+1,Kxt+1)

=
(

[xt;ut]
>
− γ[xt+1;Kxt+1]

>)
Θ(QK)

=: φ>t θK

(17)

Lecture 19: Q-learning for LQR 5

Now we can use the recursive least-square method on our dynamic system with both i and t denote time
and k denoting the Dynamic Programming step by substituting the equations we defined above. This gives
us the following values.

• error update: ek(i) = c(xt, ut)− φ>t θ̂k(i− 1);

• estimate update: θ̂k(i) = θ̂k(i− 1) + Σk(i−1)φtek(i)

1+φ>
t Σk(i−1)φt

;

• covariance update: Σk(i) = Σk(i− 1)− Σk(i−1)θtθ
>
t Σk(i−1)

1+φ>
t Σk(i−1)φt

;

• covariance initialization: Σk(0) = Σ0 = βI � I;

This recursive least-square is guarantee to converge asymptotically to true parameters if θk = QKk
remains fixed, and φt satisfy the persistence of excitation condition:

ε0I ≤
1

N

N∑
i=1

φt−iφ
>
t−i ≤ ε̄0I for all t ≥ N0 and for all N ≥ N0, for some N0 > 0.

6.4 Adaptive Policy Iteration Algorithm for LQR

Finally with everything defined in section 6, we can now propose an Adaptive Policy Iteration algorithm for
LQR problems.

Given a initial state x0 and stabilizing controller K0 and using k to denote the policy iteration steps, t the
total time steps, and i the time steps since the last policy change. We can propose the following algorithm:

Algorithm 1: Adaptive Policy Iteration for LQR

Initialize parameters: θ̂1(0) ;
t← 0;
for k = 0 to ∞ do

Initialize RLS: Σk(0) = Σ0 ;
for i = 1 to N do

ut = Kkxt + et, for et exploratory noise signal ;
Apply ut and observe xt+1 ;

Update θ̂k(i) using RLS ;
t← t+ 1 ;

end

Find matrix ˆQKk corresponding θ̂k(N) ;

set Kk+1 = −Q̂−1
Kk

(2, 2)Q̂>Kk(1, 2) ;

θ̂k+1(0) = θ̂k(N) ;

end

Lecture 19: Q-learning for LQR 6

7 Convergence Analysis

Now that we have seen an algorithm that we can use for LQR problems, we need to ask ourselves why would
it break? The reason the method that we laid out above might break is due to the fact that the Policy
improvement step is based on an estimate of Q-factor parameterized by Θ(QKk). We also have no a priory
reason to expect the Policy Iteration based on approximate Q-factors as defined in section 6.4 to converge
to an optimal policy K?. We therefore need to prove this convergence.

Theorem 1. Suppose (A,B) are controllable, K0 is stabilizing, and φt is persistently excited. Then ∃N <
∞ such that the adaptive policy iteration mechanism described previously generates a sequence {Kk} of
stabilizing controllers satisfying:

lim
k→∞

||Kk −K?||2 = 0 (18)

for K? the optimal LQR controller.

7.1 Proof: Strategy

Lets suppose that we are policy iterate k, and define the scalar “Lyapunov” like function

sk = σk(Kk−1) +
∣∣∣∣∣∣θk−2 − θ̂k−2

∣∣∣∣∣∣
2

(19)

We can propose the following high level idea that if the estimation horizon N is sufficiently long, and the
persistence of excitation conditions holds, then sk+1 ≤ sk.

We will therefore develop recursions for vk :=
∥∥∥θk=1 − θ̂k−1

∥∥∥
2

and σ (Kk−1) and then identify conditions on

both estimation horizons to ensure that they both decrease.
The key idea of this proof is that if things are well behaved in the past, and that if we have (a nearly) true
Q-Factor, our updates are guaranteed to (nearly) improve on performance.

7.2 Proof: intermediate results

Before we start we need two intermediate results. We let σ(Kk) := tr(PKk).

Lemma 1. If (A,B) is controllable, K1 is stabilizing with associated cost matrix P1, and K2 the result of
one policy improvement step, i.e., K2 = −γ(R+ γB>P1B)−1B>P1A, then:

∆ ||K1 −K2||22 ≤ σ(K1)− σ(K2) ≤ δ ||K1 −K2||22

where 0 < ∆ = σmin(R) ≤ δ = tr(R+ γB>P1B)
∣∣∣∣∑∞

i=0 γ
i/2(A+BK2)i

∣∣∣∣2
2

Lemma 2. If φt is persistently excited and N ≥ N0, then∣∣∣∣∣∣θk − θ̂k∣∣∣∣∣∣
2
≤ εN

(
||θk − θk−1||2 +

∣∣∣∣∣∣θk−1 − θ̂k−1

∣∣∣∣∣∣
2

)
,

where εN = (ε0Nσ0)−1 and σ0 = σmin(Σ0).

Lecture 19: Q-learning for LQR 7

7.3 Proof: nearby control laws are stable

Lets suppose that we are at policy iteration k, and define the scalar “Lyapunov” like function:

sk = σk(Kk−1) +
∣∣∣∣∣∣θk−2 − θ̂k−2

∣∣∣∣∣∣
2

(20)

We can make the induction assumption that si ≤ s̄0 < ∞ for all 0 ≤ i ≤ k. From this assumption we can
conclude that Kk−1 is stabilizing as σ(Kk−1) ≤ s̄0, and that the parameter estimation error is bounded as∣∣∣∣∣∣θk−2 − θ̂k−2

∣∣∣∣∣∣
2
≤ s̄0.

Now if the actual Q-function were available, we could compute the next iteration K?
k , and this controller

would be stabilizing, and by the improvement property of policy iteration, would satisfy σ(K?
k) ≤ s̄0. There-

fore by continuity of the optimal policy update (Lemma 1), we have:

∀δ > 0 ∃εδ > 0, s.t.|σ(K)− σ(K?
k)| ≤ δ ||K?

k −K||2 ∀ ||K
?
k −K||2 ≤ εδ (21)

This tells us that nearby control laws are also stabilizing.

7.4 Proof: bounding estimation error

We now need to show that sk+1 ≤ sk if the policy estimation is chosen to be large enough, i.e., if we estimate
a sufficiently accurate enough Q-factor, one of the estimation error or the performance must improve.

We first define vk =
∣∣∣∣∣∣θk−1 − θ̂k−1

∣∣∣∣∣∣
2
; then, applying the inequality of Lemma 2 we have for all k:

vk ≤ εN (vk−1 + ||θk−1 − θk−2||2) (22)

where recall that εN → 0 as N →∞.

We now recall that by our induction assumption that si ≤ s̄0 < ∞ for all 0 ≤ i ≤ k, we immediately
conclude that

• vk−1 =
∥∥∥θk−2 − θ̂k−2

∥∥∥
2
≤ s̄0

• ‖θk−1 − θk−2‖2 ≤ κ1 for some constant κ1.

This follows because Ki is stabilizing for 0 ≤ i ≤ k and hence the induce Q-functions, and corresponding
parameters θi = Θ (Qi) must be bounded. From this we can therefore write

vk ≤ εN (s̄0 + κ1) =
1

ε0Nσ0
(s̄0 + κ1). (23)

which can be made arbitrarily small by choosing the estimation interval N to be sufficiently large.

We then defineK?
k to be a one-step policy iteration using the correctQ-function, i.e., K?

k = −(Q?k−1(2, 2))−1(Q?k−1(1, 2))>,

and letKk be the one-step policy iteration using the estimatedQ-function, i.e., Kk = −(Q̂k−1(2, 2))−1(Q̂k−1(1, 2))>.
We can note that if N is sufficiently large, then Q̂k−1(2, 2) is invertible.

Lecture 19: Q-learning for LQR 8

This leads us to conclude that

||Kk −K?
k ||2 ≤ κ̄0(1 +

∣∣∣∣∣∣θ̂k−1

∣∣∣∣∣∣
2
)
∣∣∣∣∣∣θk−1 − θ̂k−1

∣∣∣∣∣∣
2

(24)

for some κ̄0 > 0, for N sufficiently large.

Now since everything is bounded, we can further simplify this expression and write:

‖Kk −K?
k‖2 ≤ κ0

∥∥∥θk−1 − θ̂k−1

∥∥∥
2

= κ0vk ≤ εNκ0 (s̄0 + κ1) (25)

where we used out previously derived bound on vk.

From equation (21) we can see that:

|σ(Kk)− σ(K?
k)| ≤ δ ||Kk −K?

k ||2 ∀N s.t. εNκ0(s̄0 + κ1) ≤ εδ (26)

This implies that Kk is stabilizing if N is large enough, and achieves performance similar to that achieved
by K?

k . Similarly, if we pick an even larger N1, then this also holds true for Kk−1, allowing us to conclude
that there exists a constant δ̄ such that

|σ(Kk)− σ(Kk−1)| ≤ δ̄ ||Kk −Kk−1||2 for all N ≥ N1. (27)

As the paper [2] explains: ”In other words, if the estimation interval is long enough, then the difference
between two consecutive costs is bounded by the difference between two consecutive controls. We use the
definition of the parameter estimation vector to write, for δ1 a constant:”

||θk−1 − θk−2||2 ≤ δ1 ||Kk −Kk−1||22 ∀N ≥ N1. (28)

This can be explained given a Q-Factor, if we optimize a set u? = −Q−1(2, 2)Q(1, 2)>x =: Kx we obtain
the value function J(x) = x>

(
Q(1, 1)−K>Q(2, 2)K

)
x which is quadratic in K.

We now can use the quadratic inequality (a+ b)2 ≤ 2
(
a2 + b2

)
to get:

||θk−1 − θk−2||2 ≤ 2δ1

(
||K?

k −Kk−1||22 + ||K?
k −Kk||22

)
≤ 2δ1(w2

k + (κ0vk)2)

≤ 2δ1(w2
k + (κ0vk))

(29)

Recalling our recursion on vk =
∥∥∥θk−1 − θ̂k−1

∥∥∥
2

we also have:

vk ≤ εN (vk−1 + ‖θk−1 − θk−1‖2) ≤ εN
(
vk−1 + 2δ1

(
w2
k + κ0vk

))
(30)

We can now rearrange our equations to obtain:

vk ≤
εN

1− 2δ1κ0εN

(
vk−1 + 2δ1w

2
k

)
(31)

Making sure that εN → 0 as N → 0, we see that vk can be made to converge to 0 so long as w2
k =∥∥K?

k −K2
k−1

∥∥
2

is well-behaved.

By noticing that σ(Kk) − σ(Kk−1) = σ(K?
k) − σ(Kk−1) + σ(Kk) − σ(K?

k). We can now use the conti-
nuity of cost of (Lemma 1) and previous bounds to conclude that id we choose our update interval N to be
sufficiently large, then there exists positive constants ∆ and δ2 such that:

σ(Kk)− σ(Kk−1) ≤ −∆ ||K?
k −Kk−1||22 + δ2 ||K?

k −Kk||22

≤ −∆ ||K?
k −Kk−1||22 + δ2

∣∣∣∣∣∣θk−1 − θ̂k−1

∣∣∣∣∣∣2
2

≤ −∆w2
k + δ2κ0vk

(32)

Lecture 19: Q-learning for LQR 9

7.5 Proof: putting it all together

Finally by combining the estimation error and cost recursions (setting them to equality) we define the system
such as: [

vk
σ (Kk)

]
=

[
εN

1−2δ1κ0εN
0

δ2κ0
εεN

1−2δ1κ0εN
1

] [
vk−1

σ (Kk−1)

]
+

[
2 εN

1−2δ1κ0εN
δ2

−∆ + 2δ2κ0
εN

1−2δ1κ0εN

]
w2
k (33)

We now recall our Lyapunov function sk = σ(Kk) +
∣∣∣∣∣∣θk−2 − θ̂k−2

∣∣∣∣∣∣
2

= σ(Kk)− vk−1. Combining this with

equation (33) above we then have:

sk+1 = sk + (−1 +
εN

1− 2δ1κ0εN
(1 + δ2κ0))vk−1 + (−∆ + 2

εN
1− 2δ1κ0εN

δ2(1 + κ0))w2
k. (34)

One can now notice that vk−1 and w2
k are non-negative, hence it suffices to pick N large enough to ensure

that the coefficients in front of them are non-positive to ensure that sk+1 ≤ sk.

Lecture 19: Q-learning for LQR 10

References

[1] Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction (The MIT Press
Cambridge, Massachusetts, London, England)

[2] S.J. Bradtke, B.E. Ydstie, & A.G. Barto: Adaptive linear quadratic control using policy iteration
(Proceedings of 1994 American Control Conference - ACC ’94).

[3] Francisco S. Melo & M. Isabel RibeiroConvergence of Q-learning with linear function approximation
(Proceedings of the European Control Conference 2007 Kos, Greece, July 2-5, 2007)

