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1 Introduction

In the last few lectures we have seen how to use machine learning and probability tools to perform system
identification and quantify associated uncertainties. More specifically, these uncertainties are produced via
concentration bounds and they are in form of error bounds with probability profiles. Now, as depicted in
Figure 1, the remaining component in our familiar learning and control pipeline is, how do we explicitly
account for this uncertainty when designing control policies? In this lecture, we will see ways to handle
uncertainties stemming from system identification using robust control tools. In the end, we would expect
end-to-end guarantees like:

With probability 1 − δ, for N sufficiently large, the synthesized controller is stabilizing and achieves the
relative performance bound

Ĵ − J?
j?

≤ C( robustness, excitability )

√
(d+ p) log

(
1
δ

)
N

(1)

where Ĵ is the performance of the learned controller on true system, J? is the optimal performance achievable,
d is the number of states and p is the number of inputs. Further notice that C is a constant depending only
on the true system matrices.
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Figure 1: A learning and control pipeline

Denote ∆A = Â−A and ∆B = B̂ −B, the uncertainties in estimated system matrices. If we know that
||∆A|| ≤ εA, ||∆B || ≤ εB , the main challenge therein is to quantify the performance degradation of a robust
controller with respect to the optimal controller as a function of (εA, εB). We will see that System Level
Synthesis (SLS) is an effective way to achieve robust control synthesis in this context.

2 Finite Horizon System Level Synthesis

Consider the linear time varying (LTV) system

xt+1 = Atxt +Btut + wt (2)
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Lecture 11: System Level Synthesis and Robust Control Bounds 2

where xt ∈ Rn is the state, ut ∈ Rp is the control input and wt ∈ Rn is the disturbance. We consider a time
horizon of t = 0, . . . , T . Let us define a linear and time-varying state-feedback law in form of

ut =

t∑
τ=0

Kt,t−τxτ (3)

and write the signals in compact form

x =


x0

x1

...
xT

 ,u =


u0

u1

...
uT

 w =


x0

w0

w1

...
wT−1

 ,K =


K0,0

K1,1 K1,0

...
. . .

. . .

KT,T . . . KT,1 KT,0

 (4)

Now, we introduce down-shift operator Z, i.e. a matrix with identity matrices along the first block sub-
diagonal and zeros elsewhere. Subsequently, we can compactly rewrite the behavior of the system (2) as

x = (I − Z(A+ BK))−1w
u = K(I − Z(A+ BK))−1w

(5)

where A := blkdiag (A0, A1, . . . , AT−1, 0) ,B := blkdiag (B0, B1, . . . , BT−1, 0). In other words, these maps
describe the system responses achieved by feedback law K from w to (x,u). Here, we highlight that the
key idea of SLS is to optimize directly over those maps, as opposed to K. More concretely, we would like to
optimize over Block Lower Triangular (BLT) matrices {Φx,Φ} defined as

Φx =


Φ0,0
x

Φ1,1
x Φ1,0

x
...

. . .
. . .

ΦT,Tx · · · ΦT,1x ΦT,0x

 ,Φu =


Φ0,0
u

Φ1,1
u Φ1,0

u
...

. . .
. . .

ΦT,Tu · · · ΦT,1u ΦT,0u

 (6)

and they satisfy [
x
u

]
=

[
Φx

Φu

]
w (7)

The following theorem ensures that there exists a BLT controller K such that the closed loop system (5)
achieves the desired behavior (7).

Theorem 1 (Theorem 2.1 [1]). For the dynamics (2) over a horizon t = 0, . . . , T, for BLT K and u = Kx,
the following are equivalent:

1. The affine space of BLT (Φx,Φu) satisfying

[
I − ZA −ZB

] [ Φx

Φu

]
= I (8)

parameterizes all achievable maps (7).

2. For all (Φx,Φu) satisfying the above constraint, denoted by C (Φx,Φu) = I for short, the controller
K = ΦuΦ

−1
x achieves the desired response (7).

Proof. 1⇒ 2: Notice first that Φ−1
x exists because (8) implies that its block-diagonal components are I. By

substituting K = ΦuΦ
−1
x into (5) we have that

x =
(
I − Z

(
A+ BΦuΦ

−1
x

))−1
w (9)
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Consider the following algebra(
I − Z

(
A+ BΦuΦ

−1
x

))−1
= ((I − ZA)Φx − ZBΦu) Φ−1

x

)−1

= Φx ((I − ZA)Φx − ZBΦu)
−1

= Φx (10)

the last step is implied by 1. For the control map:

u = ΦuΦ
−1
x x = ΦuΦ

−1
x Φxw = Φuw (11)

2⇒ 1: Consider the following algebra

[I − ZA − ZB]

[
(I − Z(A+ BK))−1

K(I − Z(A+ BK))−1

]
= (I − ZA− ZBK)(I − Z(A+ BK))−1 = I (12)

where we have utilized the definition of (Φx,Φu) via (5).

2.1 Recipe of Formulating SLS Problems

To summarize, there are three steps for turning a standard finite-time optimal control problem (FTOCP)
into an SLS problem:

1. Rewrite the problem in vector + BLT notation (4).

2. Set x = Φxw, and u = Φuw and constrain (Φx,Φu) to obey C (Φx,Φu) = I.

3. Optimize over system responses (Φx,Φu) with appropriate disturbance model and cost function.

In the following we perform those steps on LQR and L1 optimal control as illustrative examples.

2.2 Constrained LQR without Noise

The finite-time constrained LQR problem is formulated as

min
xt,ut

T∑
t=0

x>t Qtxt + u>t Rtut

subject to xt+1 = Axt +But, t = 0, . . . , T − 1

x0 known

xt ∈ Xt, ut ∈ Ut

(13)

Using vector notation, this problem can be written as

min
x,u

∥∥∥∥[ Q 1
2 0

0 R 1
2

] [
x
u

]∥∥∥∥2

F

subject to x = ZAx + ZBu

x ∈ X ,u ∈ U

(14)

where w =
[
x>0 0 . . . 0

]>
, Q := blkdiag (Q0, Q1, . . . , QT ) and R := blkdiag (R0, R1, . . . , RT ). Notice that

x = Φxw = Φx(:, 0)x0 and u = Φuw = Φu(:, 0)x0. Here we use Φ(:, 0) to denote the first block column of
a matrix Φ. Applying Theorem 1 to (14) we arrive at

minΦx,Φu

∥∥∥∥[ Q 1
2 0

0 R 1
2

] [
Φx(:, 0)
Φu(:, 0)

]
x0

∥∥∥∥2

F

subject to [I − ZA− ZB]

[
Φx(:, 0)
Φu(:, 0)

]
= I

Φx(:, 0)x0 ∈ X , Φu(:, 0)x0 ∈ U

(15)

This is an SDP problem which can be solved efficiently using existing solvers, for example MOSEK.
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2.3 L1 Optimal Control

Consider the following L1 optimal control in vector form

minx,u max‖w‖∞≤1

∥∥∥∥[ Q 1
2 0

0 R 1
2

] [
x
u

]∥∥∥∥
∞

subject to x = ZAx + ZBu + w

(16)

Once again we apply Theorem 1 and arrive at

minΦx,Φu
max‖w‖∞≤1

∥∥∥∥[ Q 1
2 0

0 R 1
2

] [
Φx

Φu

]
w

∥∥∥∥
∞

subject to [I − ZA − ZB]

[
Φx

Φu

]
= I

(17)

Using the definition of L1 norm we can eliminate the inner optimization problem over w, leading to the final
optimization problem over system responses (Φx,Φu)

minΦx,Φu

∥∥∥∥[ Q 1
2 0

0 R 1
2

] [
Φx

Φu

]∥∥∥∥
∞→∞

subject to [I − ZA − ZB]

[
Φx

Φu

]
= I

(18)

Notice that this is a linear program and thus can be solved efficiently.

3 Infinite-Horizon State-Feedback SLS

Now, let us try to extend results on finite-horizon SLS in Section 2 to the setting of infinite-horizon optimal
control. Consider a linear time invariant (LTI) plant

x(t+ 1) = Ax(t) +Bu(t) +Bww(t) (19)

The z-transform of dynamics (19) is given by

(zI −A)x = Bu + δx (20)

where δx := Bww denote the disturbance affecting the state. Consider state-feedback control policy u = Kx
as defined in (3) and substitute it into the above equation, leading to system responses (Φx,Φu) for (19)
defined as

Φx = (zI −A−BK)
−1

Φu = K (zI −A−BK)
−1

(21)

Theorem 2 (Theorem 4.1 [1]). For the LTI dynamics (19) under state-feedback control law u = Kx, the
following statements are equivalent:

1. The affine space of BLT (Φx,Φu) satisfying[
zI −A −B

] [ Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (22)

parameterizes all responses (21), achievable by an internally stabilizing state feedback controller K.

2. For all (Φx,Φu) satisfying (22), the controller K = ΦuΦ
−1
x , implemented as

u = zΦuδ̂x

δ̂x = x + (I − zΦx) δ̂x
(23)

is internally stabilizing and achieves the desired response (21).
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Proof. Almost identical to Theorem 1. See Section 4 in [1].

Remark 1. Constraint Φx,Φu ∈ 1
zRH∞ in (22) means that systems responses (Φx,Φu) are stable and

strictly proper.

4 Robust SLS

In this section, we will develop robustness result for the infinite-horizon SLS that provides necessary and
sufficient conditions under which a controller that only approximately satisfies the achievability constraint
(22) is stabilizing.

4.1 Robust Achievability and Stability

Let us now derive the robust variant of Theorem 2, which shows achievability and stability for the infinite-
horizon SLS under the presence of uncertainty.

Theorem 3 (Theorem 4.3 [1]). Let
(
Φ̂x, Φ̂u,∆

)
be a solution to

[
zI −A −B

] [ Φ̂x

Φ̂u

]
= I + ∆, Φ̂x, Φ̂u ∈

1

z
RH∞ (24)

and assume that (I −∆)−1 exists. Then the controller K = Φ̂uΦ̂
−1
x achieves the response[

x
u

]
=

[
Φ̂x

Φ̂u

]
(I −∆)−1w (25)

Further, K is stabilizing if and only if (I −∆)−1 ∈ RH∞.

Proof. First multiply (I −∆)−1 to both sides of (24) and we have[
zI −A −B

] [ Φ̂x

Φ̂u

]
(I −∆)−1 = I (26)

Then follow proof of Theorem 2. For the control we have that

u = Φ̂u(I −∆)−1
[
Φ̂x(I −∆)−1

]−1

= Φ̂uΦ̂
−1
x x = Kx (27)

Finally, to show that K is stabilizing refer to Section 4.5.1 in [1].

4.2 Robust LQR Synthesis

Now we would like to understand how our model error in system matrices (A,B) affects closed loop behavior
and performance. Recall the following assumption on the model uncertainty

∆A := Â−A, ∆B := B̂ −B, max {‖∆A‖ , ‖∆B‖} ≤ ε (28)

Let the noise term w(t) in (19) be such that w(t) := wt
i.i.d∼ N

(
0, σ2

wI
)
. Consider the following infinite-

horizon robust LQR problem

minimize sup ‖∆A‖2≤εA
‖∆B‖2≤εB

limT→∞
1
T

∑T
t=1 E

[
x?tQxt + u?t−1Rut−1

]
subject to xt+1 =

(
Â+ ∆A

)
xt +

(
B̂ + ∆B

)
ut + wt

(29)

We introduce an additional notation
RM := (zI −M)−1 (30)
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Lemma 1 (Lemma 3.4 [2]). Let the controller K stabilize (Â, B̂) and (Φx,Φu) be its corresponding system
response (21) on system (Â, B̂). Then if K stabilizes (A,B), it achieves the following LQR cost

J(A,B,K) :=

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φx

Φu

](
I +

[
∆A ∆B

] [ Φx

Φu

])−1
∥∥∥∥∥
H2

(31)

Furthermore, letting

∆̂ :=
[

∆A ∆B

] [ Φx

Φu

]
= (∆A + ∆BK)RÂ+B̂K (32)

a sufficient condition for K to stabilize (A,B) is that ‖∆̂‖H∞ < 1.

Proof. Consider the following algebra[
zI −A −B

]
=
[
zI − Â −B̂

]
−
[
A− Â B − B̂

]
=
[
zI − Â −B̂

]
−
[

∆A ∆B
]

(33)

Recall that [
zI − Â −B̂

] [ Φx

Φu

]
= I (34)

Therefore, the following holds [
zI −A −B

] [ Φx

Φu

]
= I + ∆̂ (35)

where we have used definition of ∆̂ in (32). The rest of the proof directly follows Theorem 2, 3 and Corollary
3.3 in [2] (stabilization condition stemming from the small gain theorem).

Consider the LQR problem (29) in the equivalent form

minΦx,Φu sup ‖∆A‖2≤εA
‖∆B‖2≤εB

J(A,B,K)

subject to
[
zI − Â −B̂

] [
Φx

Φu

]
= I, Φx,Φu ∈ 1

zRH∞
(36)

where J(A,B,K) is as defined in (31). Unfortunately, problem (36) is non-convex. In the following, we will
derive a conservative but interpretable upper bound. To begin with, we give the following lemma

Lemma 2 (Proposition 3.5 [2]). For any α ∈ (0, 1) and ∆̂ as defined in (32)

‖∆̂‖H∞ ≤

∥∥∥∥∥
[

εA√
α

Φx
εB√
1−αΦu

]∥∥∥∥∥
H∞

=: Hα (Φx,Φu) (37)

Proof. See Section 3.2 in [2].

We also provide the following corollary as an immediate consequence of Lemma 2.

Corollary 1 (Corollary 3.6 [2]). Let the controller K and resulting system response (Φx,Φu) be as defined
in Lemma 1. Then if Hα (Φx,Φu) < 1, the controller K = ΦuΦ

−1
x stabilizes the true system (A,B).

Based on Lemma 2, we may arrive at the following optimization problem

minγ∈[0,1)
1

1−γ minΦx,Φu

∥∥∥∥[ Q
1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

subject to
[
zI − Â −B̂

] [ Φx

Φu

]
= I, Φx,Φu ∈ 1

zRH∞∥∥∥∥∥
[

εA√
α

Φx
εB√
1−αΦu

]∥∥∥∥∥
H∞

≤ γ

(38)
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Remark 2. Problem (38) is quasi-convex (convex for fixed γ). It can be effectively solved with methods like
golden section search. Moreover, it is an infinite-dimensional optimization problem. It is possible to take
finite dimensional approximations that converge exponentially quickly to infinite dimensional solution (see
Section 6 in this note).

Remark 3. Any feasible solution to (38) will stabilize the true system (A,B). This is because γ ∈ [0, 1) which
implies that the stabilizing condition Hα (Φx,Φu) < 1 in Corollary 1 holds and hence the true system (A,B)
is stabilized. Therefore, even if the solution is approximated, as long as it is feasible, it will be stabilizing.

5 Sub-Optimality Guarantees

Now let us revisit the coarse-ID control problem and wrap up everything we have just covered to derive
end-to-end bound in (1). We start with the following technical lemma in which we construct a feasible
solution to the robust control problem (38) using the optimal controller.

Lemma 3 (Lemma 4.2 [2]). Let K? be the optimal LQR static state feedback matrix for the true dynamics
(A,B) and denote ∆ := − [∆A + ∆BK?]<A+BK? . Define ζ := (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ , and suppose

that ζ < (1 +
√

2)−1. Then
(
γ0, Φ̃x, Φ̃u

)
is a feasible solution of (38) with α = 1

2 where

γ0 =

√
2ζ

1− ζ
, Φ̃x = <A+BK?(I + ∆)−1, Φ̃u = K?<A+BK?(I + ∆)−1 (39)

Proof. Denote γ0(ζ) =
√

2ζ
1−ζ . Note that the function γ0(ζ) is monotonically increasing on (−∞, (1 +

√
2)−1]

and γ0((1 +
√

2)−1) = 1. Therefore γ0(ζ) < 1 for all ζ < (1 +
√

2)−1.
To prove the achievability constraint, plug in expressions of Φ̃x and Φ̃u into the following algebra[

zI − Â −B̂
] [ Φ̃x

Φ̃u

]
=
([

zI −A −B
]

+
[
−∆A −∆B

]) [ Φx

Φu

]
(I + ∆)−1 (40)

where {Φx,Φu} are responses achieved by K? for the true system (A,B). Since[
zI −A −B

] [ Φx

Φu

]
= I and

[
−∆A −∆B

] [ Φx

Φu

]
= ∆ (41)

we have that [
zI − Â −B̂

] [ Φ̃x

Φ̃u

]
= I (42)

Next we show the inequality constraint defined by γ = γ0 holds. First notice that

‖∆‖H∞ ≤ (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ = ζ < 1 (43)

Consider the following bounding procedure:∥∥∥∥∥
[

εA√
α

Φ̃x

εB√
1−αΦ̃u

]∥∥∥∥∥
H∞

=
√

2

∥∥∥∥[ εA<A+BK?

εBK?<A+BK?

]
(I + ∆)−1

∥∥∥∥
H∞

(Cauchy–Schwarz Inequality) ≤
√

2
∥∥(I + ∆)−1

∥∥
H∞

∥∥∥∥[ εA<A+BK?

εBK?<A+BK?

]∥∥∥∥
H∞

(Since ‖∆‖H∞ < 1) ≤
√

2

1− ‖∆‖H∞

∥∥∥∥[ εAI
εBK?

]
RA+BK?

∥∥∥∥
H∞

(Cauchy–Schwarz Inequality) ≤
√

2

1− ‖∆‖H∞
(εA + εB ‖K?‖2) ‖RA+BK?‖H∞

(Since ‖∆‖H∞ < ζ) ≤
√

2ζ

1− ζ
= γ0

(44)
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Finally, by construction we have that Φ̃x, Φ̃u ∈ 1
zRH∞. This completes the proof.

Based on Lemma 3, we can upper bound the performance of the controller synthesized from (38) in terms
of the model uncertainty (∆A,∆B). This is addressed by the following Theorem.

Theorem 4 (Theorem 4.1 [2]). Let J? denote the minimal LQR cost achievable by any controller for the

dynamical system with transition matrices (A,B), and let K? denote the optimal contoller. Let (Â, B̂) be
estimates of the transition matrices such that ‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB. Then, if K is synthesized via (38)
with α = 1

2 , the relative error in the LQR cost is

J(A,B,K)− J?
J?

≤ 5 (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ (45)

as long as (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ ≤ 1/5.

Proof. Let (γ?,Φ
?
x,Φ

?
u) be an optimal solution to problem (38) and let K = Φ?u (Φ?x)

−1
. First, note that if

‖∆̂‖H∞ < 1, we have that

J(A,B,K) ≤
∥∥∥(I + ∆̂)−1

∥∥∥
H∞

J(Â, B̂,K) ≤ 1

1− ‖∆̂‖H∞
J(Â, B̂,K) (46)

From Lemma 2 and the fact that (γ?,Φ
?
x,Φ

?
u) is feasible for problem (38) we have that

‖∆̂‖H∞ ≤ γ? (47)

Consider the following bounding procedure

J(A,B,K) ≤ 1

1− ‖∆̂‖H∞
J(Â, B̂,K) (From (46))

≤ 1

1− γ?
J(Â, B̂,K) (From (47))

≤ 1

1− γ0
J
(
Â, B̂,K?

)
(By optimality of γ?)

≤ J (A,B,K?)

(1− γ0) (1− ‖∆‖H∞)
(Similar argument as (46))

=
J?

(1− γ0) (1− ‖∆‖H∞)

(48)

As the final step, recall that ‖∆‖H∞ ≤ ζ and γ0 =
√

2ζ/(1 + ζ) which yields

J(A,B,K)− J?
J?

≤ 1

1− (1 +
√

2)ζ
− 1 =

(1 +
√

2)ζ

1− (1 +
√

2)ζ
≤ 5ζ (49)

where in the last inequality we have used the fact that ζ < 1/5 < 1/(2 + 2
√

2).

Finally, based on the above Theorem, we can give an end-to-end performance guarantee for the system
identification procedure analyzed in previous lectures, when the independent data estimation scheme is used,
along with the SLS-based robust LQR control scheme discussed in this lecture.

Corollary 2 (Corollary 4.3 [2]). Let λG = λmin

(
σ2
uΛC(A,B, T ) + σ2

wΛC(A, I, T )
)
. Suppose the independent

data estimation procedure analyzed in previous lecture is used to produce estimates (Â, B̂) and K is synthe-
sized via (38) with α = 1

2 . Then there are universal constants C0 and C1 such that the relative error in the
LQR cost satisfies

J(A,B,K)− J?
J?

≤ C0σw ‖RA+BK?‖H∞

(
1√
λG

+
‖K?‖2
σu

)√
(n+ p) log(1/δ)

N
(50)

with probability 1− δ, as long as N ≥ C1(n+ p)σ2
w ‖RA+BK?‖

2
H∞

(
1/λG + ‖K?‖22 /σ2

u

)
log(1/δ).
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Proof. Recall from the independent data estimation scheme we have that

εA ≤
16σw√
λG

√
(n+ 2p) log(32/δ)

N
, and εB ≤

16σw
σu

√
(n+ 2p) log(32/δ)

N
(51)

with probability 1− δ, as long as N ≥ 8(n+ p) + 16 log(4/δ). Since

N ≥ O
{

(n+ p)σ2
w ‖RA+BK?‖

2
H∞

(
1/λG + ‖K?‖22 /σ

2
u

)
log(1/δ)

}
(52)

we may conclude that (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ < 1
5 . This enables us to use Theorem 4. Finally,

plugging (51) into Theorem 4 gives the above result.

6 Finite Impulse Response Approximation

As mentioned earlier, the optimization problem (38) is infinite dimensional. In this section we introduce the
method of finite impulse response approximation (FIR) that provide upper bounds to the optimal value of
(38) and that can be solved in polynomial time.

6.1 A Finite Dimensional Optimal Control Problem using FIR

An elementary approach to reducing the aforementioned infinite dimensional program (38) to a finite dimen-
sional one is to only optimize over the first L elements of the system responses (Φx,Φu), effectively taking
an FIR approximation. Since these are both stable maps, the effects of such an approximation is expected
to be negligible as long as the optimization horizon L is chosen to be sufficiently large. By restricting our
optimization to FIR approximations of (Φx,Φu), we can cast the H2 cost as a second order cone constraint.
Formulation in Theorem 5.8 of [3] is used to pose the H∞ constraint in (38) as a semidefinite program, since
it takes advantage of the FIR structure in our problem. We note that using [3], the resulting problem is
affine in α when γ is fixed, and hence we can solve for the optimal value of α. Then the resulting system
response elements can be cast as a dynamic feedback controller using Theorem 2 in [4].

Before introducing the approximated problem, we introduce additional concepts and notation needed to
formalize guarantees in the FIR setting.

Lemma 4. A linear-time-invariant transfer function is stable if and only if it is exponentially stable, i.e.,
Φ =

∑∞
t=0 z

−tΦ(t) ∈ RH∞ if and only if there exists positive values C and ρ ∈ [0, 1) such that for every
spectral element Φ(t), t ≥ 0, it holds that ‖Φ(t)‖2 ≤ Cρt.
In what follows, we pick C? and ρ? to be any such constants satisfying ‖RA+BK?(t)‖2 ≤ C?ρt? for all t ≥ 0.
Now we are ready to introduce a version of problem (38) with a finite number of decision variables

minγ∈[0,1)
1

1−γ minΦx,Φu,V

∥∥∥∥[ Q
1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

subject to
[
zI − Â −B̂

] [ Φx

Φu

]
= I + 1

zL
V∥∥∥∥∥

[
εA√
α

Φx
εB√
1−αΦu

]∥∥∥∥∥
H∞

+ ‖V ‖2 ≤ γ

Φx =
∑L
t=1

1
ztΦx(t), Φu =

∑L
t=1

1
ztΦu(t)

(53)

In this optimization problem we search over finite dimension decision variables {Φx(k)}Lk=1 and {Φu(k)}Lk=1.
Given a feasible solution (Φx,Φu) of problem (53), we can implement the controller KL = ΦuΦ

−1
x with

an equivalent state-space representation (AK , BK , CK , DK) using the response elements {Φx(k)}Lk=1 and

{Φu(k)}Lk=1 via Theorem 2 of [4]. The slack term V accounts for the error introduced by truncating the
infinite response transfer functions of problem (53). Intuitively, if the truncated tail is sufficiently small,
then the effects of this approximation should be negligible on performance. The next section presents result
that formalizes this intuition.



Lecture 11: System Level Synthesis and Robust Control Bounds 10

6.2 Sub-Optimality Guarantees of FIR-Based Controller

In the following Theorem we examine the sub-optimality guarantees when the FIR-based controller synthe-
sized from (53) is used on the true system (A,B).

Theorem 5 (Theorem 5.1 [2]). Let α = 1/2 in (53) and let C? > 0 and ρ? ∈ [0, 1) be such that∥∥R(A+BK?)(t)
∥∥

2
≤ C?ρ

t
? for all t ≥ 0. Then, if KL is synthesized via (53), the relative error in the

LQR cost is
J (A,B,KL)− J?

J?
≤ 10 (εA + εB ‖K?‖2) ‖RA+BK?‖H∞ (54)

as long as

εA + εB ‖K?‖2 ≤
1− ρ?
10C?

and L ≥
4 log

(
C?

(εA+εB‖K?‖2)‖<A+BK?‖H∞

)
1− ρ?

(55)

Proof. See Section 5.1 in [2]. The proof is conceptually very similar to the one of Theorem 4. The main
difference is that one must ensure that the approximation horizon L is sufficiently large so as to ensure
stability and performance of the resulting controller.

Finally, an end-to-end sample complexity result analogous to that stated in Corollary 2 can be easily obtained
by simply substituting in the sample-complexity bounds on εA and εB specified in (51).
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