Browse wiki
From MurrayWiki
Quantifying Crosstalk in Biochemical Systems |
Abstract |
Recent work has introduced biocircuit arch … Recent work has introduced biocircuit architectures that exhibit robust oscillatory behavior in organisms ranging from cyanobacteria to mammals. Complementary research in synthetic biology has introduced oscillators in vivo and in vitro suggesting that robust oscillation can be recapitulated using a small number of biochemical components. In this work, we introduce signaling crosstalk in biocircuits as a consequence of enzyme-mediated biochemical reactions. As a motivating example, we consider an in vitro oscillator with two types of crosstalk: crosstalk in production and degradation of RNA signals. We then pose a framework for quantifying crosstalk and use it to derive several dynamical constraints and suggest design techniques for ameliorating crosstalk in in vitro biochemical systems. As an example, we show that the balance between production and degradation crosstalk plays a key role in determining system stability, potentially leading to loss of oscillatory behavior. We demonstrate that the effects of crosstalk can attenuated through the effective tuning of two key parameters in order to recover desired system dynamics. order to recover desired system dynamics. +
|
---|---|
Authors | Enoch Yeung, Jongmin Kim, Ye Yuan, Jorge Goncalves and Richard M. Murray + |
Funding | Molecular Programming Project + |
ID | 2012h + |
Source | 2012 Conference on Decision and Control (CDC) + |
Tag | yeu+12-cdc + |
Title | Quantifying Crosstalk in Biochemical Systems + |
Type | Conference Paper + |
Categories | Papers |
Modification date This property is a special property in this wiki.
|
29 October 2017 14:30:39 + |
URL This property is a special property in this wiki.
|
http://www.cds.caltech.edu/~murray/preprints/yeu+12-cdc.pdf + |
hide properties that link here |
Quantifying Crosstalk in Biochemical Systems + | Title |
---|