Difference between revisions of "EECI09: Review of information theory and communications"

From MurrayWiki
Jump to: navigation, search
m
Line 2: Line 2:
  
 
{{righttoc}}
 
{{righttoc}}
In this lecture, we will briefly review some concepts from information theory. While classical control design is a one-block design problem (design controller / estimator), networked control design is a two-block design problem (design encoder and decoder for every channel). Information theory provides sophisticated tools for considering two block design problems for communication. By adapting these tools for feedback control, we will derive some extensions of the classical Bode integral formula for arbitrary causal feedback, that may possibly include finite communication channels.
+
In this lecture, we will briefly review some concepts from information theory. While classical control design is a one-block design problem (design controller / estimator), networked control design is a two-block design problem (design encoder and decoder for every channel). Information theory provides sophisticated tools for considering two block design problems for communication. By adapting these tools for feedback control, we will derive some extensions of the classical Bode integral formula for arbitrary causal feedback, that may possibly include finite capacity communication channels.
  
 
==  Lecture Materials ==
 
==  Lecture Materials ==

Revision as of 23:43, 4 March 2009

Prev: Introduction to NCS Course home Next: Jump linear Markov processes

In this lecture, we will briefly review some concepts from information theory. While classical control design is a one-block design problem (design controller / estimator), networked control design is a two-block design problem (design encoder and decoder for every channel). Information theory provides sophisticated tools for considering two block design problems for communication. By adapting these tools for feedback control, we will derive some extensions of the classical Bode integral formula for arbitrary causal feedback, that may possibly include finite capacity communication channels.

Lecture Materials

Further Reading

Additional Information