Decentralised minimal-time dynamic consensus

From MurrayWiki
Jump to: navigation, search


Ye Yuan, Jun Liu, Richard M. Murray and Jorge Gonçalves
Submitted, 2012 American Control Conference (ACC)

This paper considers a group of agents that aim to reach an agreement on individually measured time-varying signals by local communication. In contrast to static network averaging problem, the consensus we mean in this paper is reached in a dynamic sense. A discrete-time dynamic average consensus protocol can be designed to allow all the agents tracking the average of their reference inputs asymptotically. We propose a minimal-time dynamic consensus algorithm, which only utilises minimal number of local observations of randomly picked node in a network to compute the final consensus signal. Our results illustrate that with memory and computational ability, the running time of distributed averaging algorithms can be indeed improved dramatically using local information as suggested by Olshevsky and Tsitsiklis.