A hovercraft robot that uses insect-inspired visual autocorrelation for motion control in a corridor

From MurrayWiki
Jump to: navigation, search


Sawyer Fuller and Richard M. Murray
2011 IEEE International Conference on Robotics and Biomimetics (ROBIO)

In this paper we are concerned with the challenge of flight control of computationally-constrained micro-aerial vehicles that must rely primarily on vision to navigate confined spaces. We turn to insects for inspiration. We demonstrate that it is possible to control a robot with inertial, flight-like dynamics in the plane using insect-inspired visual autocorrelators or “elementary motion detectors” (EMDs) to detect patterns of visual optic flow. The controller, which requires minimal computation, receives visual information from a small omnidirectional array of visual sensors and computes thrust outputs for a fan pair to stabilize motion along the centerline of a corridor. To design the controller, we provide a frequency- domain analysis of the response of an array of correlators to a flat moving wall. The model incorporates the effects of motion parallax and perspective and provides a means for computing appropriate inter-sensor angular spacing and visual blurring. The controller estimates the state of robot motion by decomposing the correlator response into harmonics, an analogous operation to that performed by tangential cells in the fly. This work constitutes the first-known demonstration of control of non-kinematic inertial dynamics using purely correlators.