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We model a network composed of m agents as a graph G = {V, E}. V =
{1, 2, . . . ,m} is the set of vertices representing the agents. E ⊆ V ×V is the set
of edges. (i, j) ∈ E if and only if sensor i and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i, j) ∈ E if and
only if (j, i) ∈ E. We further assume that there is no self loop, i.e., (i, i) /∈ E.

1 Static Case

Let x ∈ Rn be the state. We assume that x ∼ N (0,Σ). Each sensor make a
measurement of x:

yi = hix+ vi.

We will assume that vi ∼ N (0, Ri). x, v1, . . . , vm are jointly independent from
each other.

The optimal state estimate of x given y is

x̂ = E(x|y) = ΣHT (HΣHT +R)−1y,

with error covariance

P = Σ−ΣHT (HΣHT +R)−1HΣ =
(
Σ−1 +HTR−1H

)−1
=

(
Σ−1 +

m∑
i=1

hTi R
−1
i hi

)−1
Furthermore, we have

P−1x̂ = (Σ−1 +HTR−1H)ΣHT (HΣHT +R)−1y

=
(
HTR−1R(HΣHT +R)−1 +HTR−1HΣHT (HΣHT +R)−1

)
y

= HTR−1y =

m∑
i=1

hTi R
−1
i yi.

Let

S =
1

m

m∑
i=1

hTi R
−1
i hi,
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and

z =
1

m
hTi R

−1yi.

S and z can be computed via consensus algorithm.

Remark 1. S is of dimension n× n and z is of dimension n.

Thus, each sensor can compute the state estimate and the corresponding
error covariance matrix:

P =
1

m

[
(mΣ)−1 + S

]−1
,

and
x̂ =

[
(mΣ)−1 + S

]−1
z.

2 Dynamic Case: Distributed Kalman Filter

Kalman Filter:

1. Initialization:
x̂(0| − 1) = 0, P (0| − 1) = Σ. (1)

2. Prediction:

x̂(k + 1|k) = Ax̂(k), P (k + 1|k) = AP (k)AT +Q. (2)

3. Correction:

x̂(k + 1) = x̂(k + 1|k) + P (k + 1|k)CT (CP (k + 1|k)CT +R)−1(y(k + 1)− Cx̂(k + 1|k)),
(3)

P (k + 1) = P (k + 1|k)− P (k + 1|k)CT (CP (k + 1|k)CT +R)−1CP (k + 1|k).
(4)

2.1 Type I Filter: Fusion of Sensory Data

Similar to the static case, we have

P (k + 1) =
(
P (k + 1|k)−1 + CTR−1C

)−1
=

(
P (k + 1|k)−1 +

m∑
i=1

cTi R
−1
i ci

)−1
,

and

P (k + 1)−1x̂(k + 1)− P (k + 1)−1x̂(k + 1|k) = CTR−1(y(k + 1)− Cx̂(k + 1|k)),

=

m∑
i=1

cTi R
−1
i (yi(k + 1)− cix̂(k + 1|k))

=

m∑
i=1

cTi R
−1
i yi(k + 1)−

(
m∑
i=1

cTi R
−1
i ci

)
x̂(k + 1|k).
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Let us define

S =
1

m
cTi R

−1
i ci,

and

z(k + 1) =
1

m

m∑
i=1

cTi R
−1
i yi(k).

Then

P (k + 1) =
1

m

[
(mP (k + 1|k))−1 + S

]−1
,

and

x̂(k + 1) = x̂(k + 1|k) +
[
(mP (k + 1|k))−1 + S

]−1
(z(k + 1)− Sx̂(k + 1|k))

Remark 2. Infinite amount of communication is needed in order to reach con-
sensus on S and z(k + 1).

2.2 Type II Filter: Consensus on the State Estimate

For each sensor i:

1. Initialization:
x̂i(0| − 1) = 0, Pi(0| − 1) = Σ. (5)

2. Prediction:

x̂i(k + 1|k) = Ax̂i(k), Pi(k + 1|k) = APi(k)AT +Q. (6)

3. Correction:

x̂i(k + 1) = x̂i(k + 1|k) + Pi(k + 1|k)CT (CPi(k + 1|k)CT +R)−1(yi(k + 1)− Cx̂i(k + 1|k))

+ εPi(k + 1)−1
∑
j∈Ni

[x̂j(k + 1|k)− x̂i(k + 1|k)], (7)

Pi(k + 1) = Pi(k + 1|k)− Pi(k + 1|k)CT (CPi(k + 1|k)CT +R)−1CPo(k + 1|k).
(8)

Remark 3. Each sensor runs its own Kalman filter and they try to fuse the
state estimation by running consensus.

2.3 Type III Filter: Constant Gain Strategy

We know that KF has the same asymptotic performance as a constant gain
filter. Hence, we may be able to forget the covariance update.

Consider a simple case, where x ∈ R is a scalar. A = 1, Q = q, ci = 1 and
Ri = r.
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The KF will eventually have the same asymptotic performance as the fol-
lowing estimator:

x̂(k + 1) = (1− α)x̂(k) + α
1T y(k + 1)

m
,

where α ∈ R is the optimal gain.
Now we consider a distributed strategy:

1. Each sensor computes the local x̂i(k) based on its local measurement:

x̂i(k) = (1− α)x̂i(k|k − 1) + αyi(k).

Denote x̂(k) to be

x̂(k) ,

 x̂1(k)
...

x̂m(k)


2. We then run consensus for l times. Hence,

x̂+(k) = M lx̂(k),

where M is the consensus matrix.

3. For the prediction, since A = 1, we have

x̂(k + 1|k) = x̂+(k).

Define P (k) , Cov(x̂(k)− x(k)1), P+(k) , Cov(x̂+(k)− x(k)1).
Thus,

P+(k) = M lP (k)M lT .

and

P (k + 1) = (1− α)2P+(k) + (1− α)2q11T + α2rI

= (1− α)2M lP (k)M lT + (1− α)2q11T + α2rI.

We only care about the asymptotic performance. Consider the case where
k →∞, we have

lim
k→∞

P (k) = q11T
∞∑
k=1

(1− α)2k + α2r

∞∑
k=0

(1− α)2kMklMklT .

Therefore, define the cost to be

J = lim
k→∞

tr (P (k)) =
mq(1− α)2

1− (1− α)2
+

m∑
i=1

rα2

1− (1− α)2|λi|2l
,

where λi is the ith eigenvalue of M .

Remark 4. In general, it is difficult to jointly design M and α. If we fix M ,
then α can be found by numerical methods. One interesting observation is that
if we increase the number of consensus steps l between each time interval, then
we will increase the gain and decrease the cost J .
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