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We model a network composed of m agents as a graph G = {V, E}. V =
{1,2,...,m} is the set of vertices representing the agents. E C V x V is the set
of edges. (i,7) € E if and only if sensor 4 and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i,j) € E if and
only if (j,7) € E. We further assume that there is no self loop, i.e., (i,7) ¢ E.

1 Static Case

Let x € R™ be the state. We assume that z ~ N(0,X). Each sensor make a
measurement of x:
Yi = hiw +v;.

We will assume that v; ~ N(0, R;). x,v1,...,v, are jointly independent from
each other.
The optimal state estimate of = given y is

& =E(zly) = SHY(HSH" + R)™ 1y,

with error covariance

P=3-SHT(HSH"+R) "' HY = (3~ '+ HTR'H) ' = <z—1 + ) h R Mh

i=1

Furthermore, we have
P li=(S"'4+ H'RH)SH"(HXHT + R)™ 'y

= (H"R'RHSH" + R)"'+ H'R'HSH"(HSH" + R)™ ')y

—HTR 'y = i hi R 'y;.
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S and z can be computed via consensus algorithm.
Remark 1. S is of dimension n X n and z is of dimension n.

Thus, each sensor can compute the state estimate and the corresponding
error covariance matrix:
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P=—[mZ)"'+5]

1
m

and
&= [(m¥)""+ 3]71 z.

2 Dynamic Case: Distributed Kalman Filter

Kalman Filter:

1. Initialization:
z(0|—1)=0,P(0|—1)=X. (1)

2. Prediction:
@k + 1|k) = Ai(k), P(k + 1|k) = AP(k)AT + Q. (2)
3. Correction:
ik +1) = 2(k+1|k) + P(k + 1|k)CT(CP(k + 1|k)CT + R) Y (y(k + 1) — Ci(k + 1|k)),
(3)
P(k+1) = P(k + 1|k) — P(k + 1|k)CT(CP(k + 1|k)CT + R)~*CP(k + 1|k).
(4)
2.1 Type I Filter: Fusion of Sensory Data

Similar to the static case, we have

Pk+1)= (P(k+1k)" +CTR'C) ™

<k+1|k +ZcTR ) :
and
Plk+1)"'2(k+1) - P(k+1)'2(k+ 1|k) = CTR Y (y(k + 1) — Ci(k + 1]k)),
_ZCTR (yi(k +1) — ;@ (k + 1|k))

- Z el R Myi(k+1) — (Z ciTRglc,;> &(k + 1]k).
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Let us define )
S=—c'R ¢,
m

and |
z(k+1) = - ;ciTRflyi(k).
Then
P(k+1) = % [(mP(k+1k)~ +5] ",
and

1

Bk +1) = 2k + 1) + [(mP(k + 1)~ + 8] (2(k + 1) — Sa(k + 1]k))

Remark 2. Infinite amount of communication is needed in order to reach con-
sensus on S and z(k +1).

2.2 Type II Filter: Consensus on the State Estimate

For each sensor i:

1. Initialization:
#;(0] = 1) =0, P(0] = 1) = %. (5)

2. Prediction:

2i(k + 1|k) = Ag;(k), Pi(k + 1k) = AP;(k)AT + Q. (6)

3. Correction:
&i(k+1) = &;(k +1|k) + Pi(k + 1|k)CT(CPi(k + 1]k)CT + R) ™ (yi(k + 1) — C2i(k + 1]k))
+ePi(k+1)7" Y (@ (k + k) — &i(k + 1]k)], (7)
JEN;
Pi(k+1) = Pi(k + 1|k) — Pi(k + 1|k)CT(CPi(k 4+ 1|k)CT + R)"1CP,(k + 1|k).
(8)

Remark 3. Fach sensor runs its own Kalman filter and they try to fuse the
state estimation by running consensus.

2.3 Type 111 Filter: Constant Gain Strategy

We know that KF has the same asymptotic performance as a constant gain
filter. Hence, we may be able to forget the covariance update.

Consider a simple case, where © € R is a scalar. A=1,Q =g¢q, ¢; =1 and
Ri =T



The KF will eventually have the same asymptotic performance as the fol-
lowing estimator:

(k4 1) = (1— a)i(k) + o ¥EED

m
where a € R is the optimal gain.
Now we consider a distributed strategy:

1. Each sensor computes the local #;(k) based on its local measurement:
Zi(k) = (1 — a)&i(klk = 1) + ayi(k).
Denote & (k) to be
Z1(k)
B2 |
i (F)
2. We then run consensus for [ times. Hence,
" (k) = M'(k),
where M is the consensus matrix.
3. For the prediction, since A = 1, we have
2(k + 1]k) = 21 (k).
Define P(k) £ Cov(2(k) — z(k)1), PT(k) £ Cov(2t (k) — z(k)1).
Thus,
PH(k) = M'P(k)M'T.
and
P(k+1)=(1—a)*PT (k) + (1 —a)?q11T + o*rI
=1 —-a)’M'P()M™ + (1 — a)?q11" + o?rl.

We only care about the asymptotic performance. Consider the case where
k — oo, we have

lim P(k) = q11" Y (1 —a)® +a®r ) (1 — ) MM M7,
k=1 k=0

k—o0

Therefore, define the cost to be

. Comg(l—a)? | & ra?
J= i e (PR) = T et 2 T e

i=1
where J; is the ith eigenvalue of M.

Remark 4. In general, it is difficult to jointly design M and «. If we fix M,
then a can be found by numerical methods. One interesting observation is that

if we increase the number of consensus steps | between each time interval, then
we will increase the gain and decrease the cost J.



