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Note: In the upper left hand corner of the second page of your homework set, please put the number of hours
that you spent on this homework set (including reading).

1. Perko, Section 3.4, problem 1: Show that  is a periodic solution of the
system

that lies on the ellipse  (i.e.,  represents a cycle  of this system). Then use the
corollary to Theorem 2 in Section 3.4 to show that  is a stable limit cycle.

2. Perko, Section 3.4, problem 3a: Solve the linear system

and show that at any point  on the -axis, the Poincare map for the focus at the origin is given by 
. For , compute  and show that 

.

3. Perko, Section 3.5, problem 1: Show that the nonlinear system

has a periodic orbit . Find the linearization of this system about , the
fundamental matrix  for the autonomous system that satisfies , and the characteristic
exponents and multipliers of . What are the dimensions of the stable, unstable and center manifolds
of ?

4. Perko, Section 3.5, problem 5a: Let  be the fundamental matrix for  satisfying 
. Use Liouville's theorem, which states that

γ(t) = (2 cos 2t, sin 2t)

(x/2 + = 1)2 y2 γ(t) Γ
Γ

( , 0)x0 x
P( ) = exp(2πa / |b|)x0 x0 d(x) = P(x) − x (0)d′

d(−x) = −d(x)

γ(t) = (cos t, sin t, 0) γ(t)
Φ(t) Φ(0) = I

γ(t)
γ(t)

Φ(t) = A(t)xẋ
Φ(0) = I

=j
Tλj j = 1, … , n γ(t)
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to show that if ,  are the characteristic multipliers of  then

and

Hint: recall that the determinant of a matrix is equal to the product of its eigenvalues, and the trace
of a matrix is equal to the sum of the eigenvalues.

5. Perko, Section 3.9, problem 4a: Show that the limit cycle of the van der Pol equation

must cross the vertical lines .

Hint: you can use the fact (shown in Perko, Section 3.8) that a limit cycle exists for the van der Pol
equation and that it is unique.
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