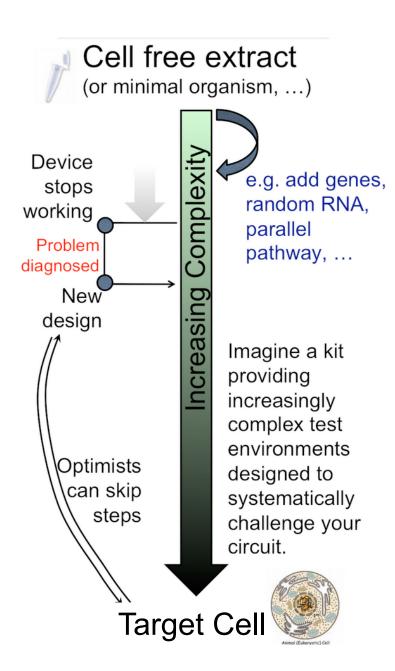
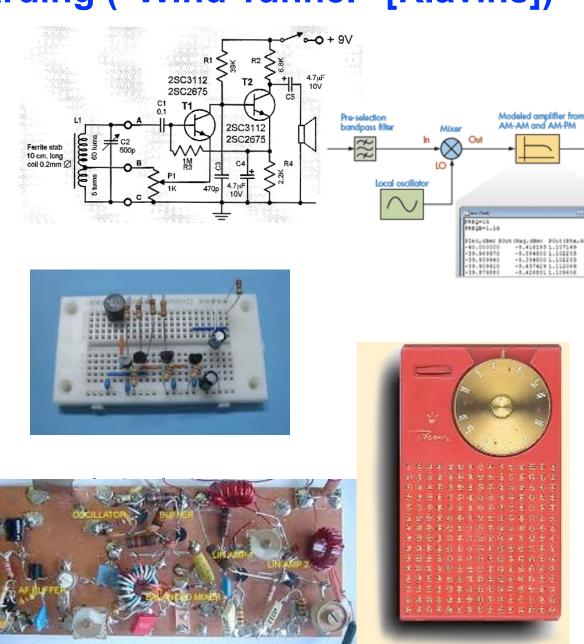


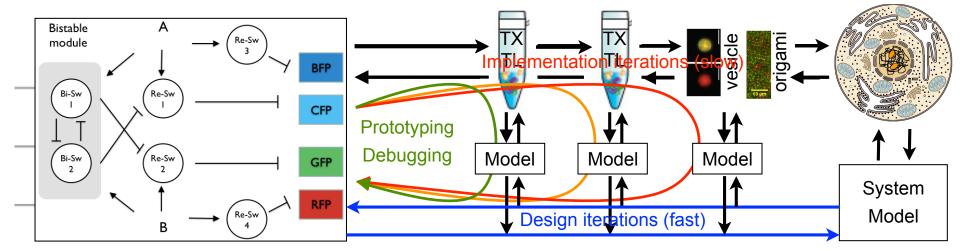
Biomolecular Breadboards for Prototyping and Debugging Synthetic Biocircuits

Richard M. Murray


Control & Dynamical Systems and Bioengineering California Institute of Technology


Vincent Noireaux Paul Rothemund Adam Abate
U. Minnesota Caltech UCSF

DARPA BTO, 23 April 2015


Funding: DARPA Living Foundries (HR0011-12-C-0065), with additional support (where noted) from Army Institute for Collaborative Biotechnology (W911NF-09-0001), NSF Molecular Programming Project (CCF-0832824), Gordon and Betty Moore Foundation, Albert and Mary Yu Foundation, ONR Biosensor MURI (FA9550-10-1-0368), Rosen Center for Bioengineering (Caltech)

Biomolecular Breadboarding ("Wind Tunnel" [Klavins])

Cell-Free Biomolecular Breadboards

Key characteristics of the cell-free breadboard (Noireaux et al)

- Inexpensive and fast: ~\$0.03/ul ⇒ \$0.30/ expt; typical reactions run for 4-6 hours
- Easy to use: works with many plasmids or linear DNA (PCR products)
 - Can adjust concentration to explore copy number/expression strength quickly
- Flexible environment: adjust energy level, pH, temperature, degradation
- Many mechanisms tested in TX-TL:

PI (+ contact)	Circuit/Technology	1 2 3
Lucks (CH)	RNA-sensing TFs	\ \ \ \
Del Vecchio (EY)	Loading effects	\ \ \ \
Temme (VH)	Orthogonal RNAPs	√? -
Voigt (DSG)	4 input, 11 gene	√x -
Tabor (JK)	Green light sensor	√?∘
Endy (VH)	DNA memory	√ ○ -
Del Vecchio (SG)	Phospho-insulator	
Kortemme (EdIS)	Molecular sensors	√ ○-
Jewett (YW)	Butanediol pathway	√√ ○

http://www.openwetware.org/wiki/breadboards

Breadboards Project Goals and Objectives

Develop, demonstrate, document, and disseminate (two) new "biomolecular breadboards" that provide engineers with 10-100X improvement in time required to conceive, design and implement working biomolecular circuits

Program metric	Current	Phase I	Phase II
Time required from synthesized DNA sequences to measurement of circuit performance (on cell-free breadboards)	1-2 wk	3 days	1 day
2. Time required to build a novel, modest complexity (6-8 unique promoter) circuit - existing design, novel components (in vitro/in vivo)	3-6 mo	1 mo	1 wk 1-2w/2-4m
Number of circuits that can be tested simultaneously, varying component concentration and/or cell-free toolkit parameters	5	25	100
4. Number of genes and regulatory parts characterized, modeled and available for use in cell-free circuits (and artificial cells)	2	5	20
5. Number of circuit combinations that can be screened per day, varying component concentration and/or genetic elements	5	N/A	10 ⁶

Documentation: http://openwetware.org/wiki/breadboards

- Z. Z. Sun et al, Protocols for Implementing an Escherichia Coli Based TX-TL Cell-Free Expression System for Synthetic Biology. JoVE, 2013
- Z. Z. Sun et al, Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Syn Bio, 2013
- D. Siegal-Gaskins et al., Resource usage and gene circuit performance characterization in a cell-free 'breadboard', ACS Synthetic Biology, 2014

- M. Takahashi et al, Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) Systems, ACS Syn Bio, 2014 [2013 CSHL course]
- M. Takahashi, C. Hayes et al, Characterizing and prototyping genetic networks with cell-free transcription-translation reactions, Methods, 2015 [s]
- H. Niederholtmeyer, Z. Z. Sun et al, A cell-free framework for biological systems engineering, 2015 [s]

Novel combinatorial promoter (Hayes)

po70-AraC

AND

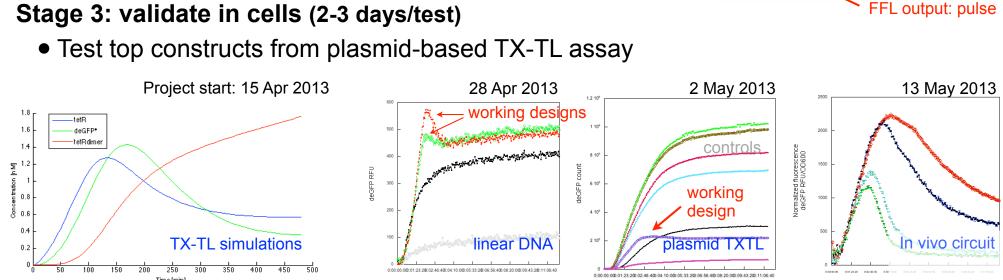
pBAD-TetO-deGFP

pBAD-TetR

Sample TX-TL Based Design Process

Stage 0: modeling with TX-TL modeling toolbox

Desired function + specs → set of possible designs


Stage 1: prototyping with linear DNA (0.5-1 day/cycle)

- Components from std library or PCR extension (no cloning)
- Compare w/ models; insure we can model what we see
- Downselect 4-8 designs to test in plasmids

Stage 2: prototyping with plasmid DNA (2 days/cycle)

- Clone into plasmid(s), using std sequences/protocols
- Verify operation in TX-TL, incl copy number variability
- Match results to models and linear DNA

DARPA LF, 14 Jan 2014

Murray, Rothemund, Noireaux, Abate (Caltech/UMN/UCSF)

Noireaux Cell-Free Expression Toolbox (TX-TL)

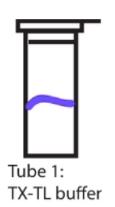
Basic Protocol Steps (extract prep)

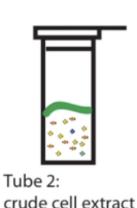
- BL21 Rosetta2 cells grown at 37°C in 2xYT medium up to OD600 = 1.5
- Cells broken with a bead-beater (Biospecs) using 0.1 mm glass beads
- Clarified by centrifugation at 30000 g for 25 minutes [remove beads/membrane]
- Pre-incubated 80 minutes at 37°C followed by a centrifugation at 30000 g for 10 minutes [remove DNA/RNA?]
- Dialyze against S30 buffer B for 3 hours [removes small molecules]

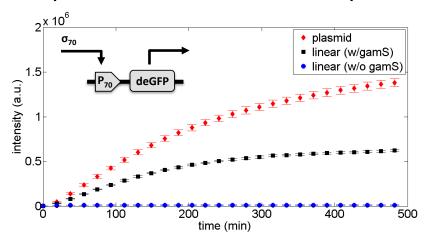
Tube 1: buffer

 Amino acids + energy solution (NTPs) + MG/K (calibrate for max expr)

Tube 2: extract


- 27-30 mg/ml of proteins (~1/30 E. coli)
- Stable at least 1 year at -80°C

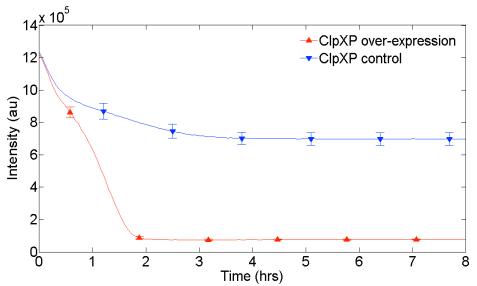

Tube 3: DNA encoding circuit

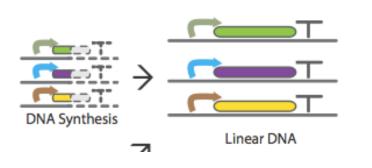


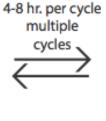
TX-TL Core Processes

Zachary Sun, Vincent Noireaux

Rapid prototyping using linear DNA


 Use PCR products with GamS to get expression levels of ~60% of plasmid

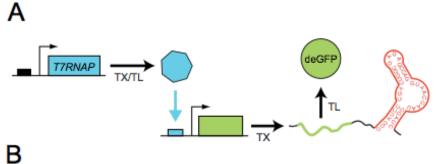


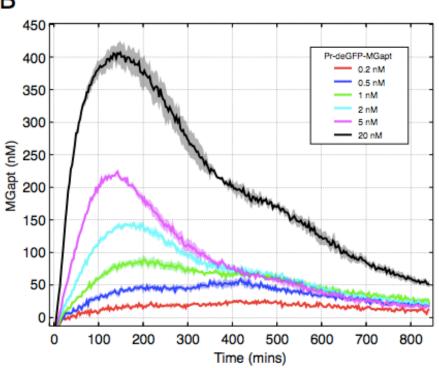

- Allows rapid assembly of constructs
 - PCR extension for simple circuits
 - Golden gate ass'y of components

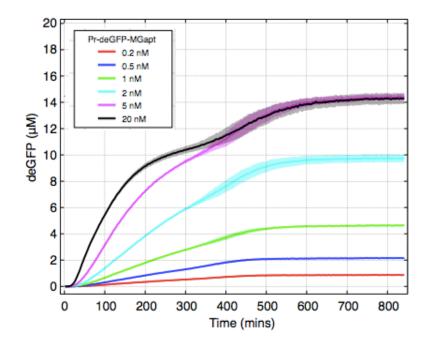

Protein degradation

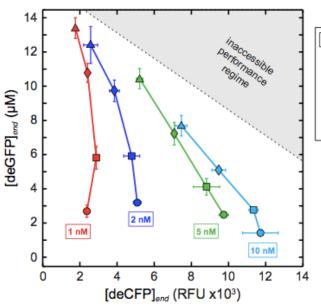
 Use clpXP machinery to degrade tagged proteins

Plasmid DNA




cells in vivo


Resource Limits


Limited capacity affects performance

 Saturate transcriptional and/or translational machinery

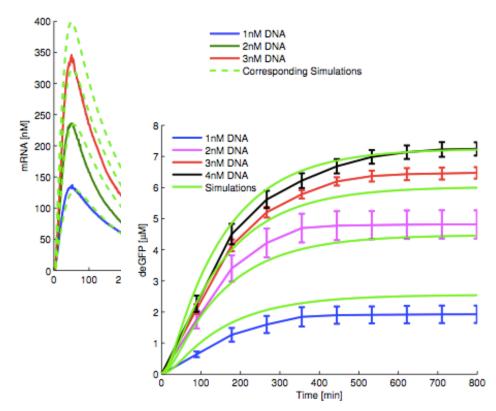
TX-TL Modeling

Zoltan Tuza, Vipul Singhal, Dan Siegal-Gaskins

MATLAB toolbox (sf.net/projects/TXTL)

```
% Set up the standard TXTL tubes
tube1 = txtl_extract('e1');
tube2 = txtl_buffer('b1');

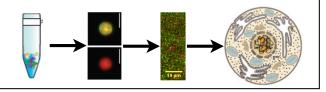
% Set up a tube that will contain our DNA
tube3 = txtl_newtube('circuit');
dna_tetR = txtl_dna(tube3, 'ptet', 'rbs', 'tetR', 100, 'linear');
dna_gamS = txtl_dna(tube3, 'p70', 'rbs', 'gamS', 10, 'plasmid');


% Mix the contents of the individual tubes and add some inducer
well_a1 = txtl_combine([tube1, tube2, tube3], [6, 2, 2]);
txtl_addspecies(well_a1, 'aTc', 0.1);

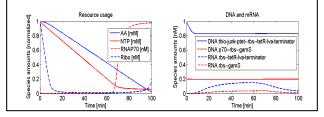
% Run a simulation
[t_ode, x_ode, names] = sbiosimulate(well_a1);
```

Negative Autoregulation Example - Gene Expression TetR Species amounts [nM] GamS **GFPt** GFP* 20 30 40 50 60 70 80 90 100 Time [min] Resource usage DNA and mRNA amounts [normalized] ∑ 5 0.8 AA [mM] 9.0 c. NTP [mM] DNA thio-junk-ptet--rbs--tetR-lva-terminator -RNAP70 [nM] DNA p70--rbs--gamS --RNA rbs--tetR-lva-terminator -Ribo [nM] 0.4 RNA rbs--gamS Species 0.2 0.2 80 100 Time [min] Time [min]

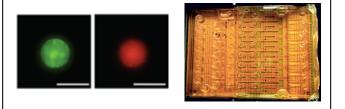
Resource utilization effects


- Model+TXTL shows effects of fixed number of RNAPs and ribosomes
- Additional sigma factor gene introduces significant 'crosstalk', reduces output
- Calibrated models that match experimental results

Phase I Accomplishments (21 May 2013 - 20 May 2014)

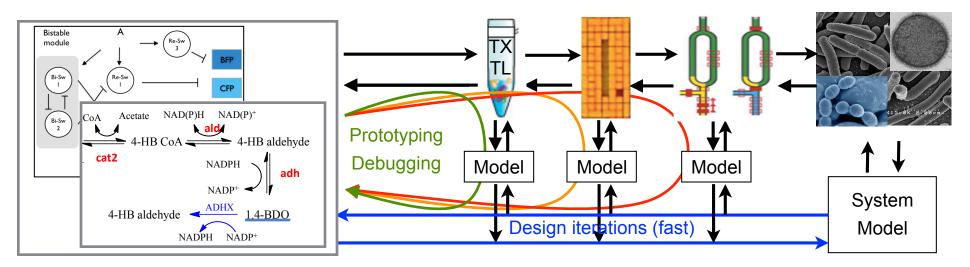

TX-TL cell-free toolbox

- \$0.03/ul, 1 day cycle time
- Linear DNA (w/ protect'n)
- Protein degradation (via YbaQ and ssrA tags)
- Detailed protocols (JoVE)
- Circuits: switch, IFFL, toxin-antitoxin + partners
- Design 3-6 gene circuit, in vitro → in vivo in 1 mo


TX-TL modeling toolbox

- MATLAB (Simbiology) based toolbox with 10 line circuit specs
- Validated models for gene expression, regulation, w/ resource lims
- Full source code and user documentation available on web

TX-TL vesicles & droplets


- Inducer-based expression in droplets
- Time course measurements of reporters in 0.3 µl droplets on ALL R110
- Hiccup: ALL acquired by Illumina, Oct 2013...

Publications: 3 journal, 6 conference/technical reports

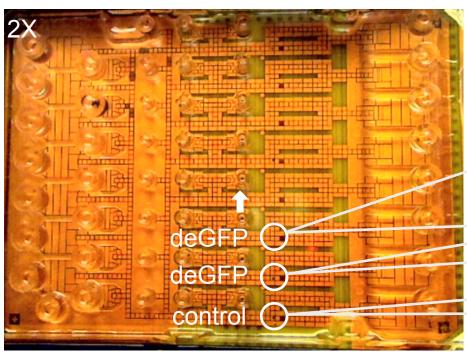
- Z. Z. Sun et al, Protocols for Implementing an Escherichia Coli Based TX-TL Cell-Free Expression System for Synthetic Biology. JoVE, 2013
- Z. Z. Sun et al, Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Syn Bio, 2013
- D. Siegal-Gaskins et al, Resource usage and gene circuit performance characterization in a cell-free 'breadboard', ACS Synthetic Biology, 2014

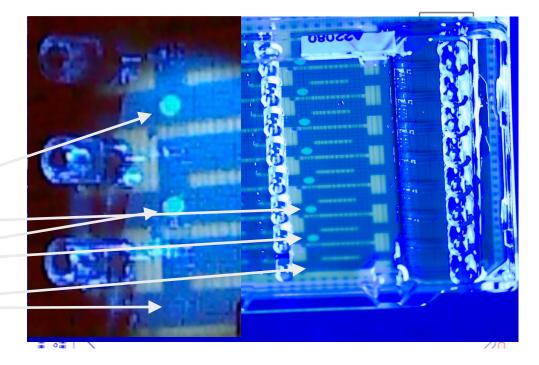
Cell-Free Biomolecular Breadboards: Phase II

Focus areas for Phase II

- Improved circuit prototyping and debugging
- Microfluidics
 - Droplet-based microfluidics (ALL)
 - Ultra high throughput μfluidics (UCSF)
 - Continuous reaction loops (EPFL)
- Metabolic pathways: 2,3-BDO and 1,4-BDO
- Improved characterization and extract prep
 - **-** *E. coli* strains and preparation methods
 - Organisms: B. subtilis, L. Lactis (ongoing)

Student/Postdoc	Circuit/Technology	MPC
Jongmin Kim	T7 RNAP aptamer	///
M. Takahashi*	RNA-based SIMM	///
Enoch Yeung	Event ordering	///
Shaobin Guo*	Fold change detect	///
Zach Sun / H. Niederholtmeyer	Novel repressilator	///
	5-node repressilator	///
Victoria Hsiao*	Freeze dried TX-TL	- 🗸 -
Clare Hayes	4-input NOR gate	√√ ○
Yong Wu*	1,4 BDO pathway	○√ ○

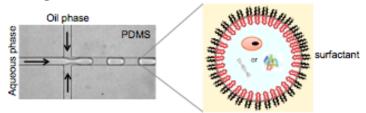

http://www.openwetware.org/wiki/breadboards

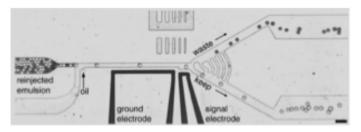

Droplet-Based TX-TL w/ Advanced Liquid Logic Analyzer

Enoch Yeung, Sean Sanchez (+ Lisa Bukovnic, Sri Punnamaraju, Nick Trotta @ ALL/Illumina)

Merging cell-free breadboard and Advanced Liquid Logic droplet system:

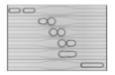
- Enables rapid prototyping of circuit performance in small volume regime.
- Spatial manipulation of droplets allows for spatial modularity of reaction volumes:
 - merging droplets allows for infusion of new fuel molecules to extend the lifetime of a breadboard reaction indefinitely.
 - splitting a droplet of reaction mixture simulates division of artificial "cells" and RNA/ protein dilution
- Status: all TX-TL operations can be performed in ALL, including chemical transform'n




High Throughput Microfluidics (w/ A. Abate)

High throughput microfluidic platform


Droplet generation

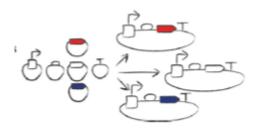


Sorting

Splitting

Picoinjection

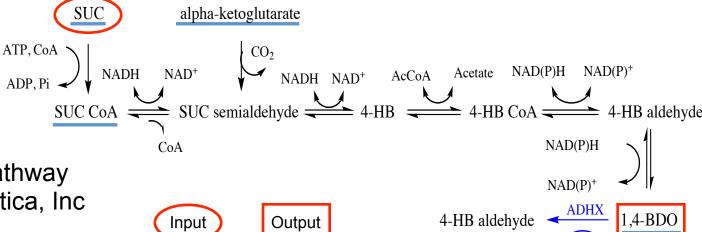
Goal: rapid design space exploration


- Screen 10⁶ circuit combination per day, varying component concentration and/or genetic elements
- Make use of data for mathematical modeling and circuit optimization
- Test on biosynthesis pathways

Exploration methods

Component combinatorics

TX-TL based genetic libraries



Challenges: measurement, combinatoric mixing, droplet ID, system ID, theory

Application: 1,4-BDO pathway exploration

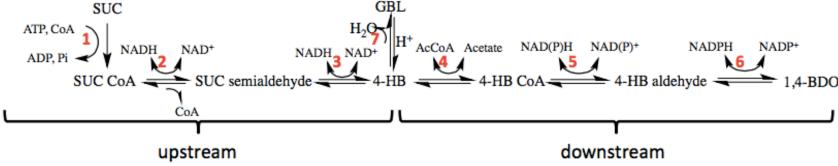
1,4-BDO

 High-value chemical used in plastics, elastic fibers, and solvents (~\$33/L)

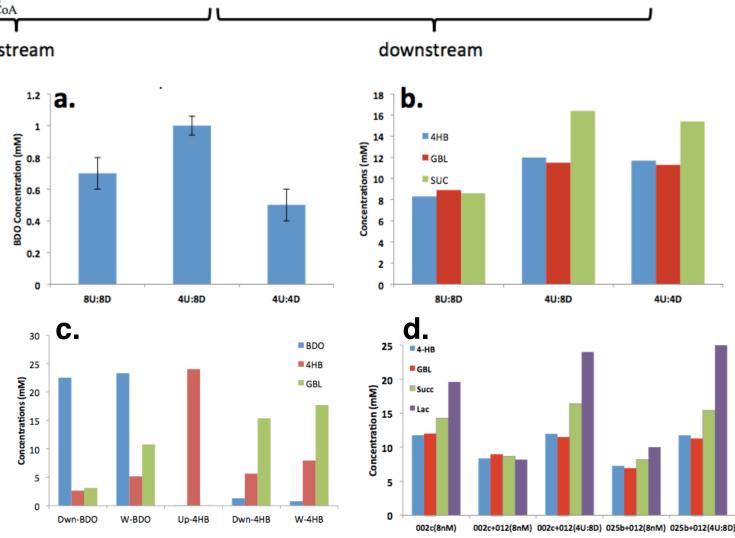
 E. coli biosynthesis pathway optimized by Genomatica, Inc (San Diego)

Design space exploration

- Use ultra-high throughput microfluidics with TX-TL to optimize pathway
- BDO sensing via engineered enzyme (from Genomatica)

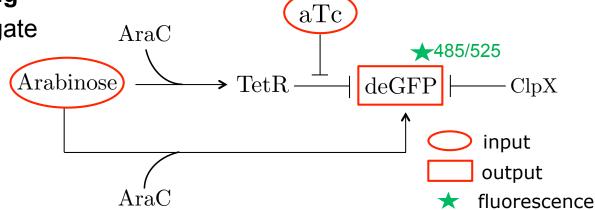

Challenges

- Compatability of process steps with TX-TL and microfluidics
- Interaction of pathway (and cofactors) with native pathways


* NADPH

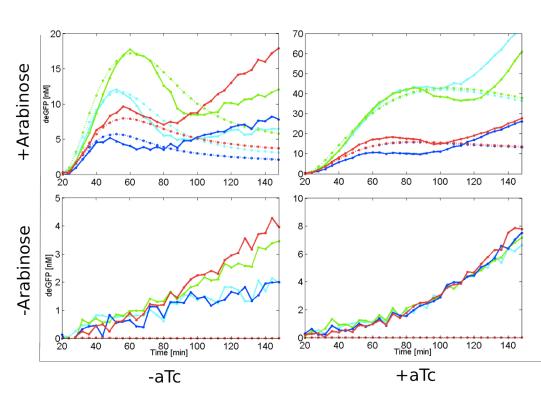
Prototyping 1,4-BDO Using TX-TL

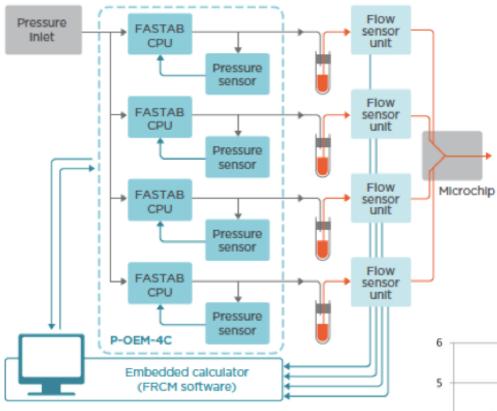
(joint work with Genomatica, Inc)


- a, b: Vary upstream and downstream components to explore pathway fluxes
- c: Add intermediate metabolites with portions of pathway in place
- d: Explore mutated enzymes
- Not shown: vary redox potential

Modeling and System ID

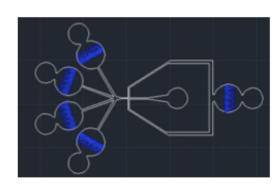
Good progress in TX-TL modeling

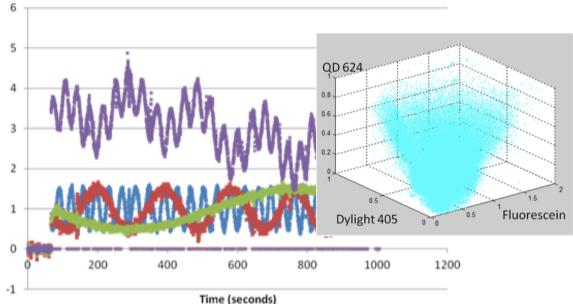

- Testing IFFL as pathway surrogate
- Able to capture FFL performance across operation conditions with accuracy of ~10%

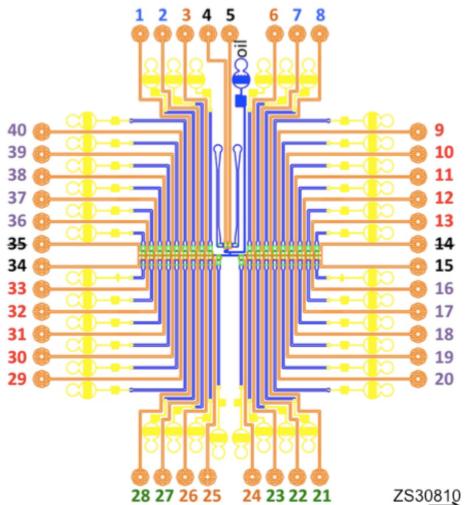

$$\begin{split} \dot{x} &= -d_1 x + \bar{c}_1 \\ \dot{y} &= -d_2 y + \bar{c}_2 \frac{x}{\bar{K}_1 + x} u_1 + \bar{b} \\ \dot{z} &= -d_3 z - \bar{c}_\phi \frac{z}{K_\phi + z} \phi + \bar{c}_3 \frac{x}{(\bar{K}_5 + x)g(y, u_2)} u_1 + \bar{b} \\ \dot{\phi} &= -d_4 \phi + \bar{c}_4, \end{split}$$

where
$$g(y, u_2) = \frac{-(\bar{K}_3 + u_2 - y) + \sqrt{(\bar{K}_3 + u_2 - y)^2 + 4y\bar{K}_3}}{2\bar{K}_7}$$

u_1	Ratio of pBAD promoter induced by arabinose $(u_1 \in [0, 1])$
u_2	aTc concentration [nM]
K_1	MM const. for AraC:pBAD-TetR binding [nM]
K_3	Dissoc. const. for aTc:TetR binding [nM]
K_5	Dissoc. const. for (AraC):(pBAD-tetO-deGFP) [nM]
K_7	Dissoc. const. for (TetR):(pBAD-TetO-deGFP) [nM]
d_i	degradation rates [min ⁻¹]
\bar{c}_i	(Maximal) expression rate × DNA concentration [nM/min]
$ar{b}_i$	leakiness \times DNA concentration [nM/min]




High Throughput Mixing (UCSF)

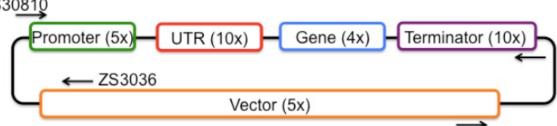

Built four-input multiplexer

- Capable of mixing 4 different inputs in combinatorial ratios
- Keep track of concentrations with dyes
- Tested on IFFL (surrogate) pathway
 - System ID and optimization
 - Direct design space exploration
- Demonstrated ability to test 10⁴ combinations in < 1 day (using FFL)

High Throughput Assembly (UCSF)

Function	Valve
LIBRARY collect	4
WASTE Drops	5
ENZYME	15, 34

DNA	#	Valve
Prom	5	21,22,23,27,28
UTR	10	9-13 + 29-33
Gene	4	1,2,7,8
Term	10	16-20 + 36-40
Vector	5	3,6,24,25,26
reserve	2	14 + 35


Channel height

Blue (fluidic): 50 um Yellow (fluidic): 15 um Green (valve): 35 um Orange (pneumatic): 40 um

Dead volume: 25 nL Operating pressure: 3 psi

GGA assembly

- Mix any combination of 40 parts
- Do Golden Gate Assembly and PCR in droplets
- Allows creation of structured DNA libraries
- Demonstrated
 10k library < 3h,
 w/ 0.75 mL DNA
 (1M = 90 mL and
 5d 19h)

Breadboards Project Milestone Summary

Phase I

- ▼1.1: Develop, document and disseminate protocols for TX-TL based prototyping
- √1.1: Demonstrate design of simple circuit (3–6 unique promoters) within 1 month.
- √ 1.3: Demonstrate complex circuits composed of 5–10 genes carried out in vesicles.
- √ 1.3: Engineer artificial cells with 1–2 different lipidic patterns

Phase II

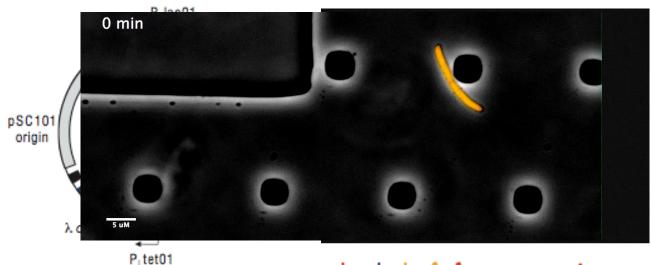
- √2.1: Run TX-TL workshop to train interested researchers (Aug 2013, Jun 2014).
- √2.1: Use TX-TL design cycles to implement 4-8 promoter circuit in E. coli [delayed]
- √2.1: Use TX-TL design cycles to implement 8-16 promoter circuit in 1 week [at risk].
 - 1 week cycle time for *in vivo* implementation is not feasible (expect 2-4 weeks)
 - Given delays in simpler circuits, may not make this milestone by target date
- √2.6: Demonstrate all TX-TL protocols using Advanced Liquid Logic (ALL)
- √2.6: Detect 5 properties in droplets using impedence/fluorescent spectroscopy
- √2.6: Demonstrate ability to chemically transfer biological circuits into cells
- √2.7: Screen 10⁴ unique TX-TL combinations in <24 hours using <1 mL reagent.
 </p>
- √2.7: Input/output dataset with >10⁶ screened combinations of 6-8 components
- ₹2.7: System ID for modeling, prediction, and optimization of pathway performance
- **✓**2.7: DNA assembly of 10⁶ circuit variations in <48 hrs using <100 mL reagents

Original Repressilator in Continuous TX-TL

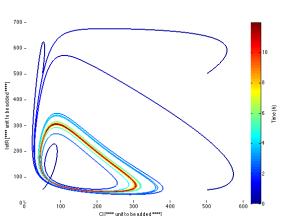
Oscillation requires dilution

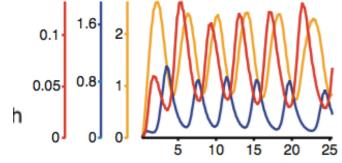
 Not possible to obtain enough degradation in TX-TL using just proteases

Use microfluidics to emulate

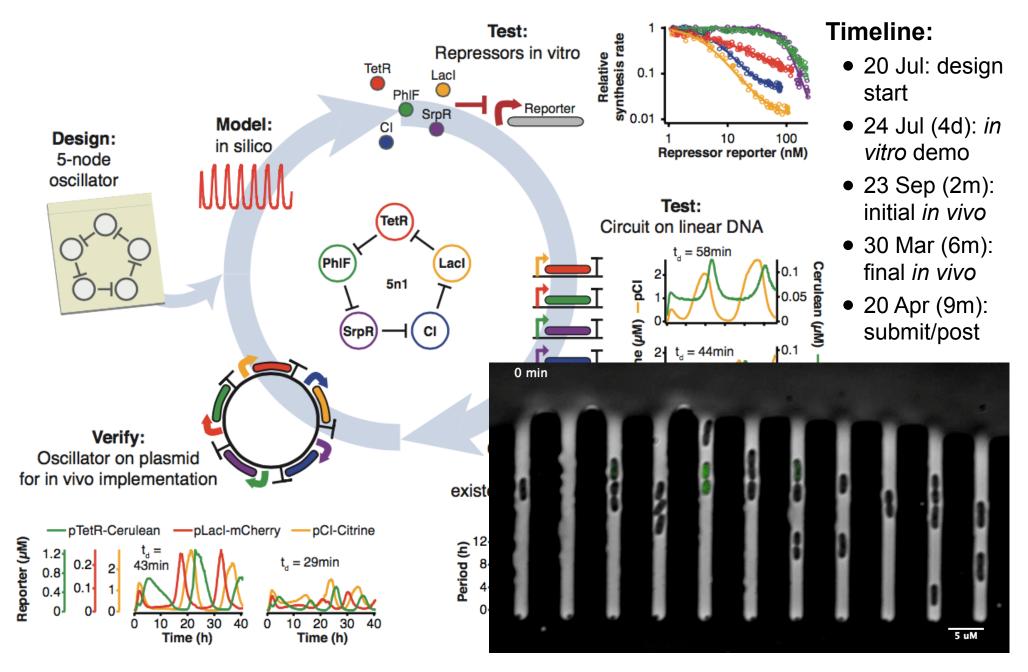

- Program dilution rate to explore amplitude, period
- Modified version with multiple reporters

Modeling matches *in vitro* experiments


 ODE-based model that includes mRNA and protein dynamics

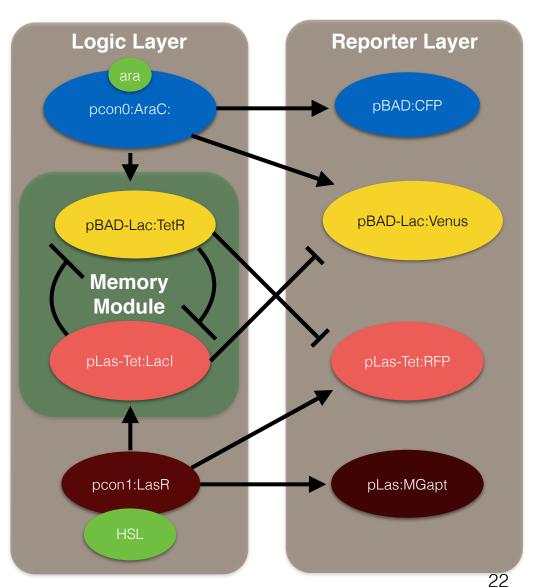

Very fast implementation

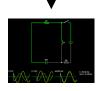
- Initial data obtained within days of sending DNA to FPFI
- Multi-color version in vivo


Vivo data: Elowitz and Liebler 1999 Nature Vitro data: Collaboration with Niederholtmeyer and Maerkl, EPFL

5 Node Oscillator in TX-TL

An Event Detector Biocircuit: DARPA Milestone 2.1.3


Milestone: Investigators will demonstrate the ability to get a modest complexity circuit (8–16 unique promoters, based on composing simpler circuits) working in E. coli, documenting the amount of time required for design iterations and debugging, as well as all protocols for breadboard environments and compensation mechanisms.

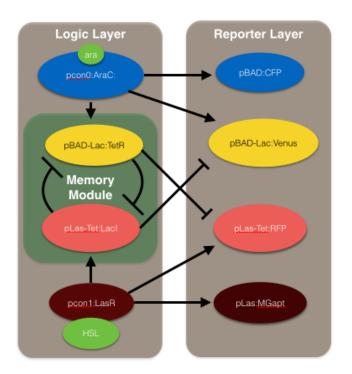

Enoch Yeung Kyle Martin Department of Computing and Mathematical Sciences, Caltech

Event Detector Biocircuit

Circuit Models & Simulations (1-2 days)

Breadboard Testing (~2 weeks of design-test cycling)

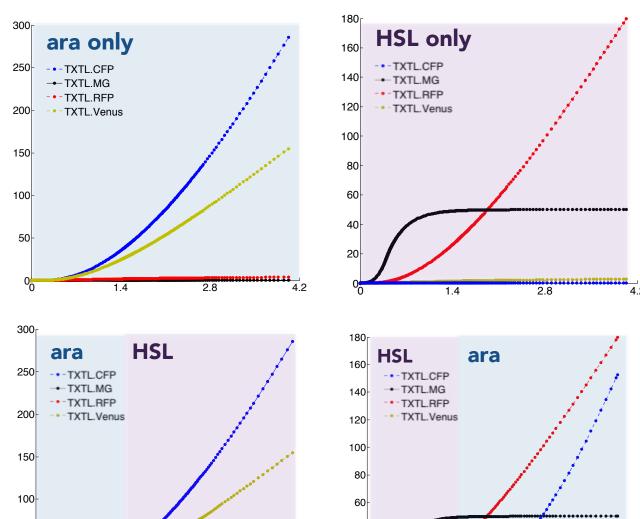
Functional Circuit Synthesis (~2 months of cloning & testing)



Field Applications (in progress)

Biocircuit Modeling & Simulations Reveal a Functional Event Detector

50


Event Detector Biocircuit

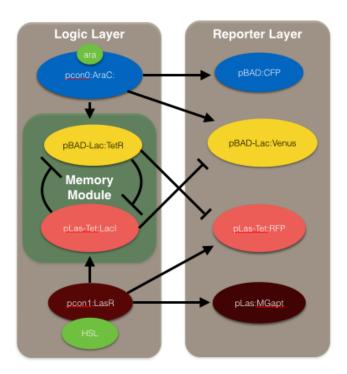
Expected (Steady-State) Outcomes

ara only	
HSL only	
ara then HSL	
HSL then ara	

Simulation Results

40

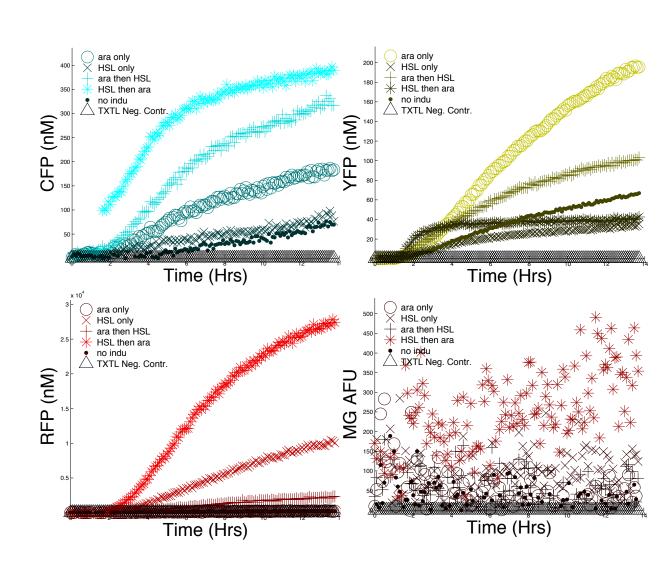
20


4.2

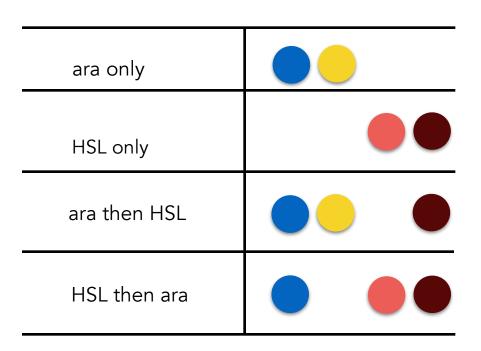
2.8

2.8

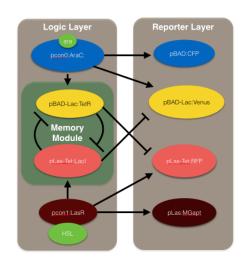
Biomolecular Breadboard Experiments Confirm Model Predictions


Event Detector Biocircuit

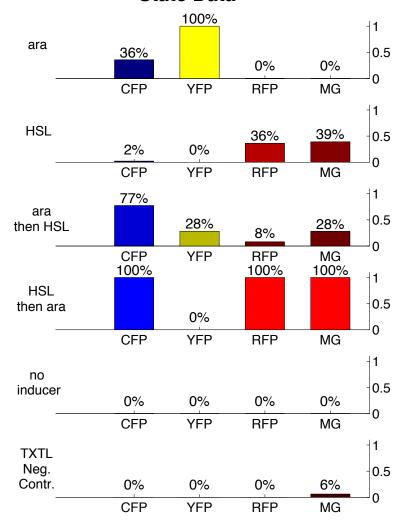
Expected (Steady-State) Outcomes

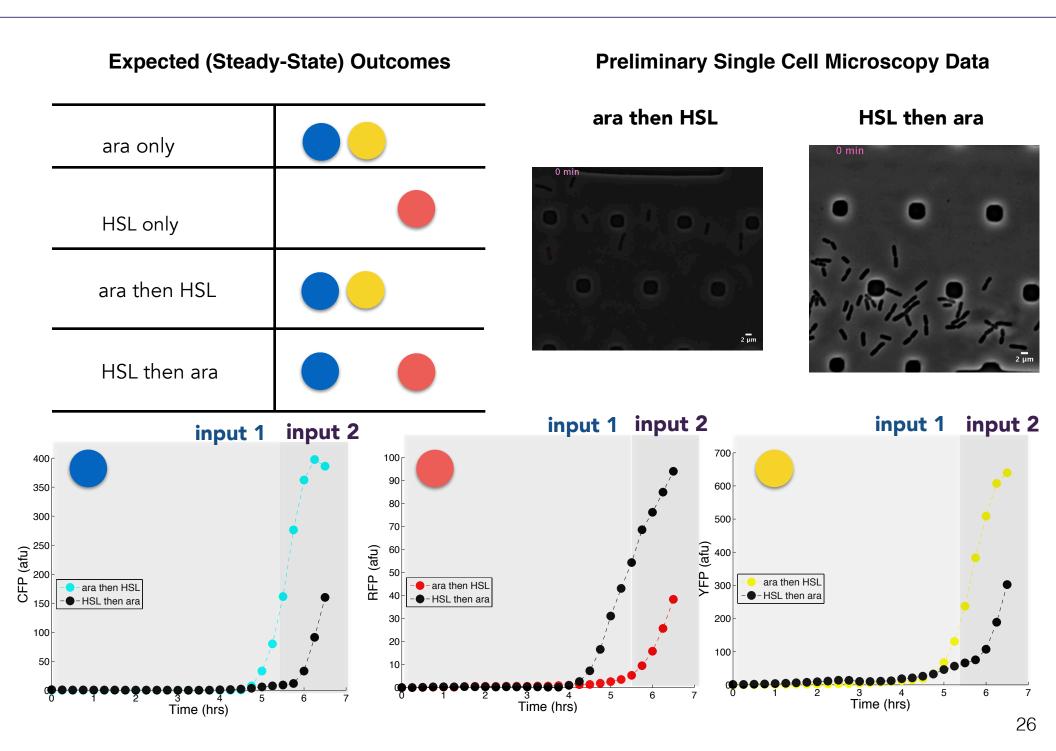

ara only	
HSL only	
ara then HSL	
HSL then ara	

Biomolecular Breadboard (TXTL) Data



Biomolecular Breadboard Steady-State Outcomes Match Predictions


Expected (Steady-State) Outcomes


Event Detector Biocircuit

Biomolecular Breadboard (TXTL) Steady-State Data

The event detector biocircuit functions in vivo in MG1655 E. coli

Breadboards Project Personnel

Personnel	Role	School	Activity
Richard M. Murray	PI	CIT	PI; circuit design, modeling and prototyping
Adam Abate	co-PI	UCSF	High throughput microfluidics
Vincent Noireaux	co-PI	UMN	Cell-free breadboard, artificial cells
Paul Rothemund	co-PI	CIT	Biochemical wires, prototyping
Filippo Caschera	postdoc	UMN	artificial cells
Clare Chen	undergrad	CIT	TX-TL modeling
• Emzo de los Santos+	grad student	CIT	TX-TL circuit testing
• Jonathan Garamella+	grad student	UMN	TX-TL toolbox v2.0
• Shaobin Guo+	grad student	CIT	TX-TL circuit implementation
• Mikhail Hanewich-Hollatz*	grad student	CIT	biochemical wires
Clarmyra Hayes	research tech	CIT	TX-TL circuit design protocols
• Yutaka Hori*	postdoc	CIT	high-throughput system ID
• Victoria Hsiao*	grad student	CIT	TX-TL circuit testing
Chaitanya Kantak	postdoc	UCSF	high-throughput combinatorial screening
Jongmin Kim+	postdoc	CIT	TX-TL protocols
Barclay Lee	undergrad	CIT	TX-TL characterization (standard circuits)
• Gita Mahmoudabadi*	grad student	CIT	TX-TL characterization (metabolic)
• Joe Meyerowitz*	grad student	CIT	TX-TL circuit testing
Chris Ochs	postdoc	UCSF	high-throughput DNA assembly
Mark Rustad	grad student	UMN	TX-TL toolbox v2.0
Sean Sanchez	research tech	CIT	droplet-based automation
Daniel Siegal-Gaskins+	postdoc	CIT	TX-TL modeling, circuit-testing
• Vipul Singhal*	grad student	CIT	TX-TL modeling
• Zachary Sun*	grad student	CIT	TX-TL methodology, characterization
Anu Thubagere+	grad student	CIT	TX-TL characterization
Tuan Tran	postdoc	UCSF	optical labeling and detection
• Zoltan Tuza*	visiting student	CIT	TX-TL modeling
• Yong Wu+	grad student	CIT	metabolic pathway testing
• Enoch Yeung*	grad student	CIT	ALL analyzer testing, protocols

* = fellowship + = other project

Caltech: 21 UCSF: 4 UMN: 4

Journal papers

- 4 appeared
- 2 submitted
- ~4 in prep

Conf papers

- 7 appeared
- 3 accepted

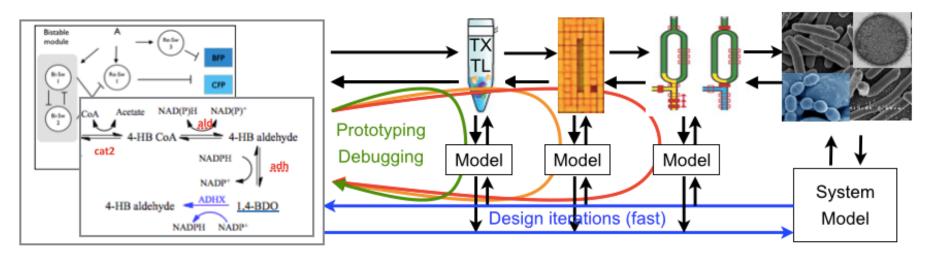
Tech reports

- all q-bio, SEED submissions posted as bioRxiv preprints (on submission)
- 8 preprints

Breadboards Project Interactions

TX-TL short courses: 3 days, training + small project (data on day 1)

- Aug 2013 (17 participants): Amanda Loshbaugh (UCSF), Stephen Fried (Stanford), Ariel Hecht (Stanford/NIST), Lap Man Lee (U. Mich), Arnaz Khushroo Ranji (Northwestern), Cameron Myhrvold (Harvard), Hari Sivakumar (UCSB), Jaimie Stewart (UC Riverside), Phil Romero (UCSF), Liz Norred (U. Tenn/ONRL), Andrew Reimer (UC Riverside), Tuan Tran (UCSF), Scott Livingston (Caltech), Leopold Green (UC Riverside), Patrick Caveney (U. Tenn/ONRL), Brent Lutz (Covitect), Anna Paulson (Princeton)
- Jun 2014 (16 participants): Ania Baetica (Caltech), Anton Frisk (Lund), Deborah
 Fygenson (UCSB), Chaitanya Kantak (UCSF), Ashty Karim (Northwestern), Pulkit Malik
 (U. Marlyand), Chris Ochs (UCSF), Narajan Srinivas (Caltech), Jong Seto (UCSF),
 Brandon Wong (BU), David Younger (U Washington), Tiffany Zhou (Caltech) + 4 iGEM


CSHL courses: two weeks, with TX-TL session (all) + TX-TL projects

- 2013 (6): RNA-based project (Lucks); published in ACS Syn Bio, 2014
- 2014 (16): RNA-based session + project, CRISPR, TX-TL characterization (*Methods*)

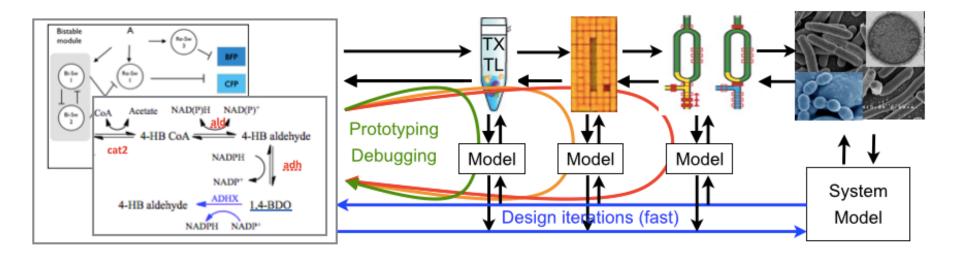
Labs using TX-TL:

- Developers: Caltech, Minnesota (Noireaux), Cornell (Lucks), Northwestern (Jewett)
- Users: Rice (Tabor), Princeton (Rabitz), Genomatica (Culler), Imperial (Ellis, Stan), ARL (Perkins, Warner), NIST (Munson, Hecht), EPFL (Maerkl), UCSF (Abate, Kortemme),
- Testing (they send circuits to us): MIT (Del Vecchio, Voigt), Harvard (Silver), U. Texas (Alper), Pivot Bio (Temme), Stanford (Endy), Rutgers (Sontag)

Next Steps, Transition Opportunities, Gaps

Ongoing activities

- Ongoing grants: NSF MPP (Winfree),
 ONR MURI (Voigt), AFOSR BRI (Del Vecchio), ARO ICB, HFSP (Maerkl)
- CSHL synthetic biology short course
- Caltech Grubstake better extract
- DARPA 1KM (UCSF) better µfluidics
- Metabolic pathways (w/ Genomatica)
- Next TX-TL bootcamp (June 2015)
- Synvitrobio, Inc (founded Mar 2015)
- Rotation + summer projects (many)


Additional opportunities

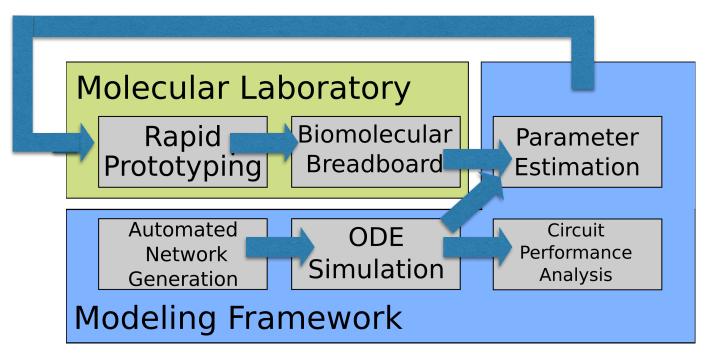
- TX-TL platform advances (Synvitrobio)
 - Better repeatability, lower cost
 - Educational kits (freeze-dried)
 - Extracts from other organisms
- Cell-free biosynthesis (Jewett)
- Paper-based TX-TL circuits (Collins)
- Biomolecular circuit theory (Fahroo?)

Gaps

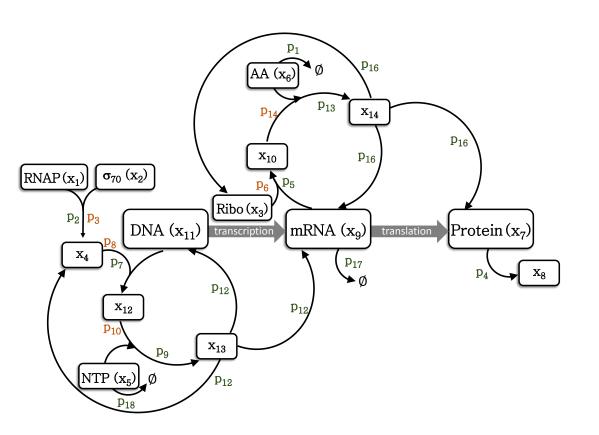
• *Vitro*→*vivo*, resource lims, eukaryotes

Summary: Cell-Free Biomolecular Breadboards

Program metric	Current	Phase I	Phase II
Time required from synthesized DNA sequences to measurement of circuit performance (on cell-free breadboards)	1-2 wk	3 days	1 day
2. Time required to build a novel, modest complexity (6-8 unique promoter) circuit - existing design, novel components (in vitro/in vivo)	3-6 mo	1 mo	1 wk 1-2w/2-4m
3. Number of circuits that can be tested simultaneously, varying component concentration and/or cell-free toolkit parameters	5	25	100
4. Number of genes and regulatory parts characterized, modeled and available for use in cell-free circuits (and artificial cells)	2	5	20
5. Number of circuit combinations that can be screened per day, varying component concentration and/or genetic elements	5	N/A	10 ⁶


http://www.openwetware.org/wiki/breadboards

Backup


TX-TL Modeling Toolbox

Motivation

- Create a modeling framework to support rapid prototyping in a biomolecular breadboard.
- Modeling assumptions based on lab experiments
- Calibrate the model to experimental data
- Assist experimenters (Automatic exploration of the possible dynamics)
- Build a library of characterized parts for rapid in-silico prototyping of circuits

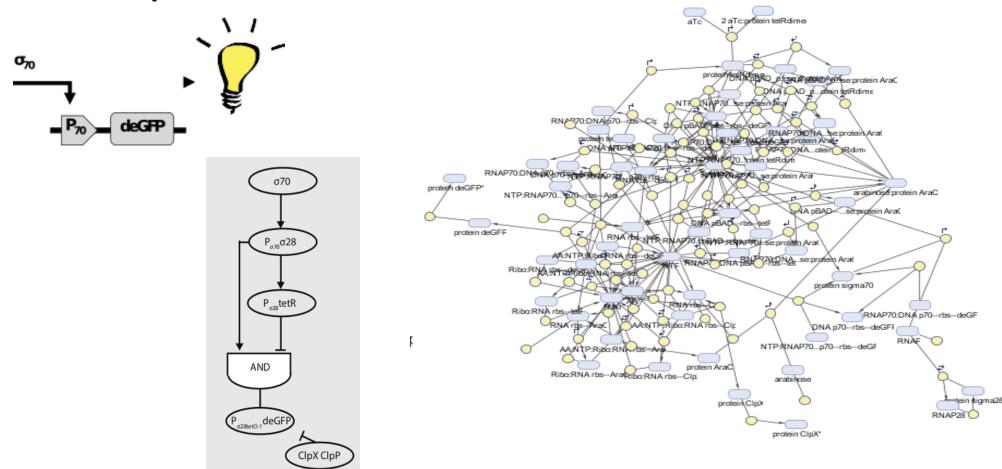
Modeling

Modeling assumptions

- Mass action kinetics
- Finite resources
- Coupling through resources
- TX: various stages of initiation lumped into a single step. Similarly for elongation and termination.

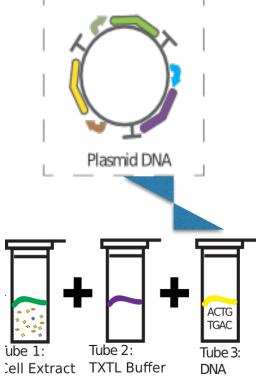
Our approach accounts for

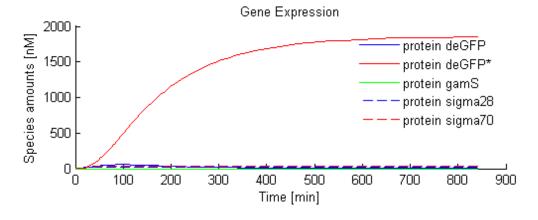
- Resource utilization, Enzyme loading
- Sigma Factors

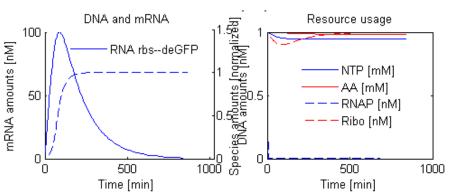

Not considered

 Sequence information or spatial structure

Automatic Network Generation


Automatic generation of reaction network (simple gene expression vs. feed forward loop)


Making functional connections (based on the library of elements, e.g. Promoter: pLac + Protein: Lacl → Repression)

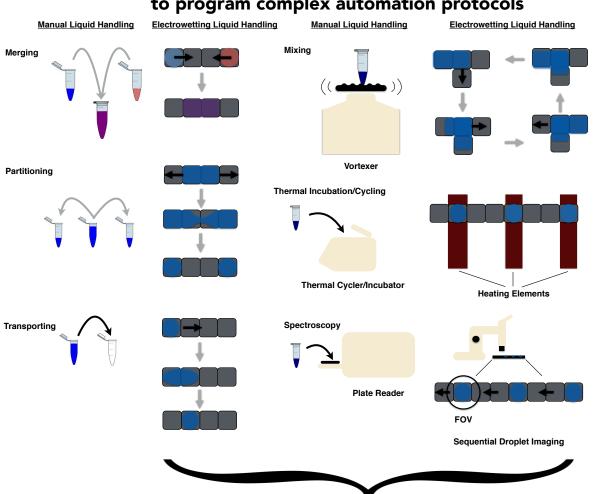


Few lines of code

Define basic components	tube1 = txtl_extract('E6'); tube2 = txtl_buffer('E6'); tube3 = txtl_newtube('circuit');
Define your circuit	txtl_add_dna (tube3, 'p70(50)', 'rbs(20)', 'deGFP(1000)', 4.0, 'plasmid');
Combine each components	Mobj = txtl_combine([tube1, tube2, tube3]);
Run the simulation	[t_ode,x_ode] = txtl_runsim (Mobj,simulationTime);
Plot the result	txtl_plot(t_ode,x_ode,Mobj);

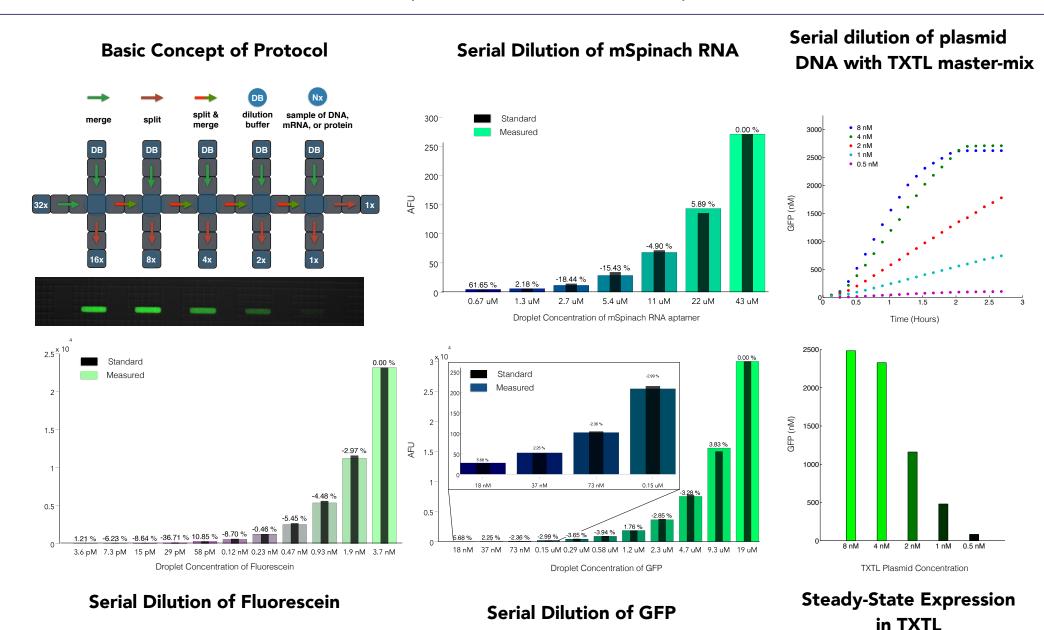
Automation Protocols in Electrowetting Microfluidics: DARPA Task 2.6

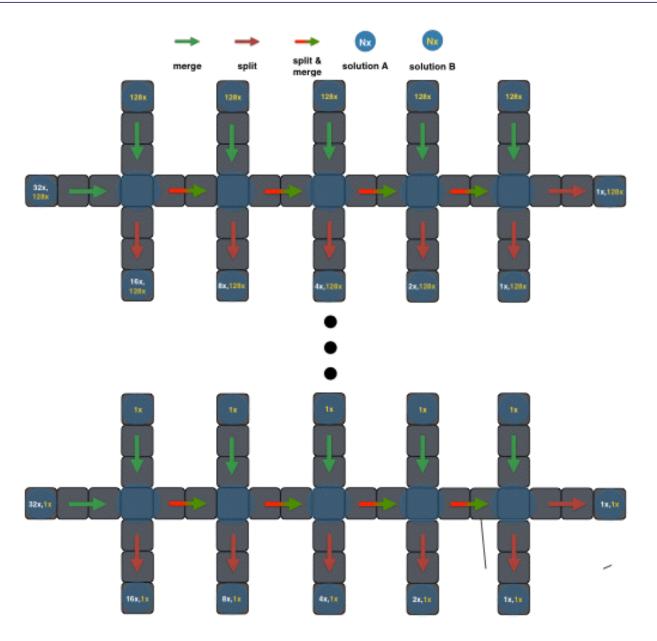
Statement of Work: Investigators shall develop, document and dessiminate a set of protocols and technologies enabling the use of digital microfluidics (droplets) to carry out TX-TL reactions for prototyping and debugging of biological circuits. Taken together, these new capabilities will enable real-time monitoring and cellular incorporation of synthetic gene circuits.



Enoch Yeung Sean Sanchez

Engineering & Applied Science, Caltech

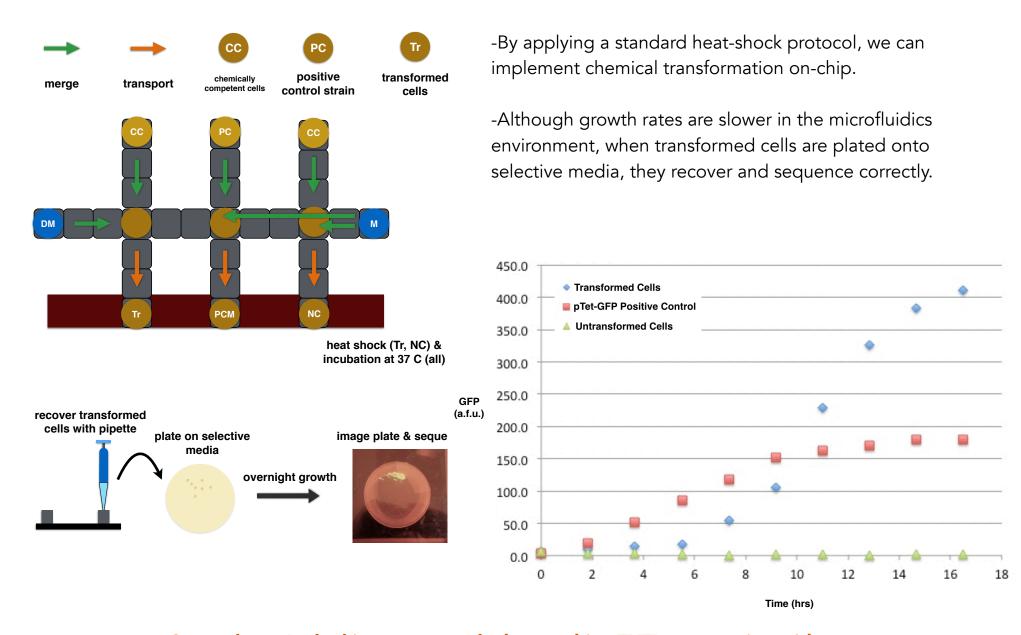

Basic microfluidic functions can be rapidly combined to program complex automation protocols



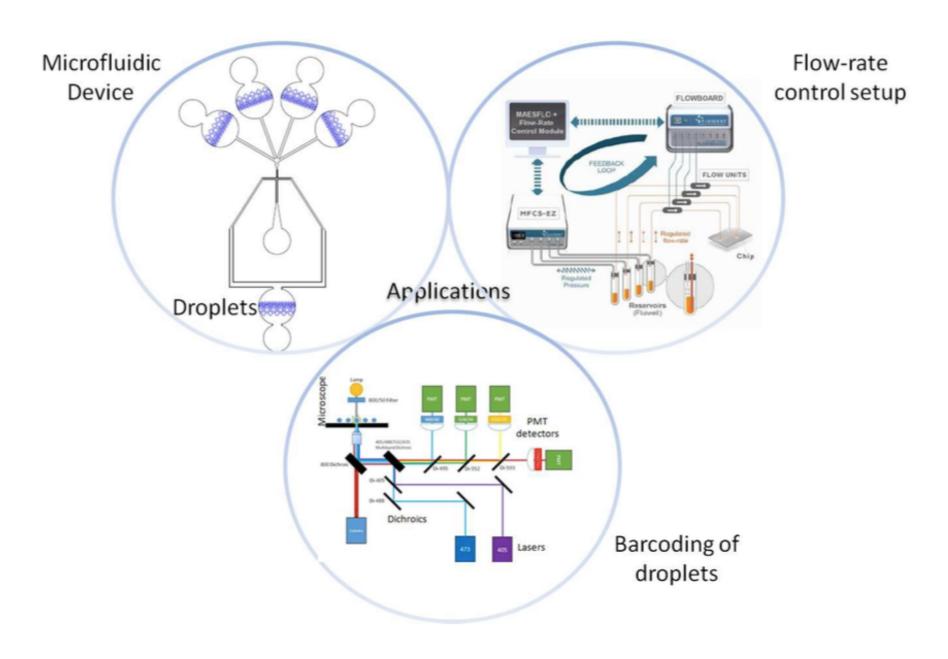
Programmable Protocols for Automating Biological Workflows

EWOD microfluidics can be programmed to perform the basic functions of TXTL sample prep and a plate reader.

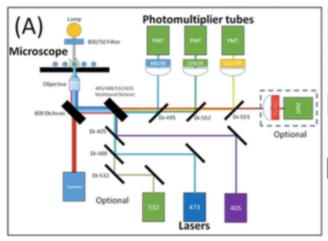
EWOD microfluidics can be used to automate multi-variate titration assays

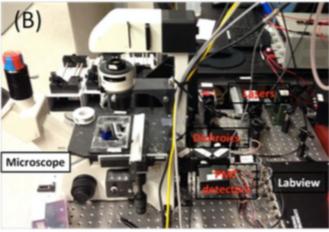


Steady-State Expression of 42 TXTL Reactions


EWOD microfluidics can be programmed to automate extensive testing of the biocircuit design parameter space.

EWOD microfluidics can be used to automate chemical transformations




Currently, we're looking at protocols that combine TXTL prototyping with cell transformation and in vivo characterization .

Combinatorial Design Space Exploration

Dropometer

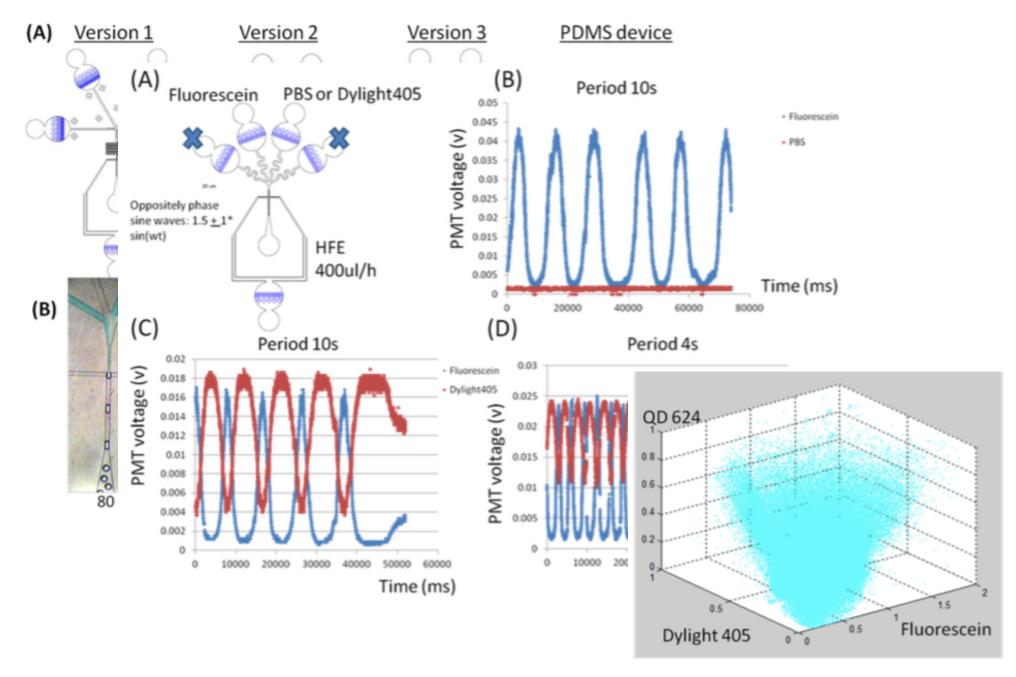
(C)

Optical Components for microfluidic dropometer

Three low noise colour lasers: violet (405nm), blue (473nm) and green (532nm); 50mW

Thorlabs photomultiplier tubes-PMM02 with wavelength range response in 280-630nm

Motic AE31 inverted microscope with 4X, 10X, 20X and 40X high NA objectives with two-way observation (eyepiece and camera) and lamp.


FPGA NI-7842R (200kHz, LX50) from National instruments

Dichroics and mirror assembly on the optical breadboard as per in the schematic

(A) We have built the microfluidic dropometer which can work with one laser and one detector. The system can be extended up to 3 PMTs and 3 lasers which were required for testing TX-TL circuits. We use Labview programming required for necessary data collection. The acquisition rate of 0.2MHz can be achieved by NI FPGA as per the milestone. Optical setup of the dropometer can be seen. (B)&(C) We have chosen FPGA (NI-7842R) which has acquisition rate of 200 KHz and built the optical system surrounding it using lasers and PMTs as shown. The selection of optical components (lasers, PMTs, dichroics, bandpass filters) was carried out to suit the emission and excitation spectra of these dyes: fluorescein, GFP, Cy5, Dylight 405, BV510, BE605, PE610, QD624 etc. The system is modular and can be possibly adapted to the most of the fluorescent dyes which are excited by specified lasers (violet, blue, green).

Combinatorial Mixer

References

- F. Caschera and V. Noireaux. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. *Biochimie*, 99:162–168, 2014.
- [2] OpenWetWare. Biomolecular breadboards for prototyping and debugging synthetic biocircuits. http://www.openwetware.org/wiki/Biomolecular_Breadboards_for_Prototyping_and_Debugging_Synthetic_Biocircuits, retrieved 5 April 2015.
- [3] D. Siegal-Gaskins, Z. A. Tuza, J. Kim, V. Noireaux, and R. M. Murray. Resource usage and gene circuit performance characterization in a cell-free 'breadboard'. ACS Synthetic Biology, 2014.
- [4] Z. Z. Sun, C. A. Hayes, J. Shin, R. M. Caschera, F.and Murray, and V. Noireaux. Protocols for implementing an escherichia coli based tx-tl cell-free expression system for synthetic biology. Journal of Visualized Experiments (JoVE), (e50762), 2013.
- [5] Z. Z Sun, E. Yeung, C. A Hayes, V. Noireaux, and R. M Murray. Linear dna for rapid prototyping of synthetic biological circuits in an escherichia coli based tx-tl cell-free system. ACS Synthetic Biology, 2013.
- [6] M. K. Takahashi, J. Chappell, C. A. Hayes, Z. Z. Sun, J. Kim, V. Singhal, K. J. Spring, S. Al-Khabouri, C. P. Fall, V. Noireaux, R. M. Murray, and J. B. Lucks. Rapidly characterizing the fast dynamics of rna genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synthetic Biology, 2014.
- [7] Z. A. Tuza, V. Singhal, J. Kim, and R. M. Murray. An In Silico modeling toolbox for rapid prototyping of circuits in a biomolecular "breadboard" system. In Conference on Decision and Control, 2013.