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Analysis & Design of Biomolecular Feedback Systems

Systems Theory

e Role of feedback

e System identification
e Effects of crosstalk

In Vitro Testbeds

e RNA-based genelets

e Biomolecular breadboards
° Droplet-based automation
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Biocircuit Design
e Fast feedback mechanisms
e Heterogeneous redundancy

e Systematic design methods
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Some results to date

e Role of (multiple) feedback loops in generating bimodality, robust response

e Design of rate and concentration regulation circuits (genelets + scaffold proteins)

® Time-delay as a mechanism for “design of dynamics” (mainly theory, so far)

e Prototyping/debugging using cell-free extracts (modeling/experiments, droplets/bulk)
e Effects of resource limits (TX-TL experiments, simulations + theory)

e Temperature dependence and temperature compensation

UC Berkeley, May 2013
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Franco and M, CDC 2008

Genelet Circuits: In Vitro Rate Regulator

Idea for a circuit: produce two chemicals at same rates
e Common operation for metabolic networks - maintain stoichiometry
¢ Implemented using in vitro technology (test tubes instead of cells)
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Molecular programming for in vitro systems
e Exploit Watson-Crick base pair binding (A-T, C-G)
e Can “compile” functional specifications into RNA and DNA sequences
e Circuits are biocompatible = some hope of embedding into cells
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Rate Regulator Results

In vitro experiments

e Add templates +
enzymes to test tube

e Use fluorophors to
measure amount of
repression

Rate regulator functions
correctly

e When T1 is high, get **
more repression of T1
(to bring R1, R2 into
balance)

e Can also use cross
activation

Extensions (ongoing) 0.5
e Coupling/loading (PNAS)
e Sensing/actuation

® |ntegral feedback (via o
feedforward “loops™)

UIUC,Apr 2012
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Franco et al, PNAS 2011

Improving Modularity
A

T12=120nM, T21=250nM
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From Genelets to Genes

Moving to in vivo circuits Active protein
e Explore heterogeneous
redundancy
PY U se allosteric regulation Transcriptional Allosteric Comparison
\ Control > Regulation to ~-———  nducer
for rapld response (production) (activation) Reference
(similar to chemotaxis) _
e Transcriptional feedback
for low frequency gain
® Need a way to compare
signal with a reference
Device Design Low state
PReference Scaffold functional scaffold
@ [high] f Active expression
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Del los Santos, Hsiao and M, ACC 2013

Concentration Regulation via Scaffold Proteins (Hsiao)

Basic idea

e Use scaffold domains to modulate
activity of histidine kinase and
response regulator proteins

e Use anti-scaffold feedback to mod-
ulate activity level and regulate con-
centration of output to match input

Results to date

® Models + experiments demonstrate
ability to modulate output (GFP)
concentration to better match input
(RFP) concentration

¢ Finalize quantitative comparison
and explore design tradeoffs
Future possibilities

e Protein domain provide mechanism
for programmable circuits

e Starting point for biomolecular
event detectors (comparators)

MURI kickoff, 8 Apr 2013 Richard M.
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Future State: Event Detectors (In Vitro & In Vivo)
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work: modular techniques
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Sun et al, JOVE 2013 (a)

Cell-Free Biomolecular Breadboards
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Key characteristics of the cell-free breadboard (Noireaux et al)
¢ Inexpensive and fast: ~$0.03/ul for reactions; typical reactions run for 4-6 hours
e Easy to use: works with many plasmids or linear DNA (PCR products!)
= Can adjust concentration to explore copy number/expression strength quickly
e Flexible environment: adjust energy level, pH, temperature, degradation
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Milestones/demo for Phase | http://www.openwetware.org/wiki/breadboards
e Q1: Post protocol on web, along with controls + summary of costs
e Q2: Demonstrate breadboard on 2 circuits (eg, switch, IFFL), document iteration time
e Q3: Post complete protocols + variations (degradation, energy, ...) + validated models
e Q4: Demonstrate design of 3-6 promoter circuit with 3 day cycle time, 1 month total

Phase Il demo: 8-16 promoter circuit, 100 variations, 1 day cycle time, 1 week total

Living Foundries, 12 Jul 2012 Murray, Rothemund, Noireaux (Caltech/UMN) 9




Sample TX-TL Based Design Process

S0: modeling (minutes/cycle, systematic design & analysis)
e Desired function + specs — set of possible designs
(circuits) + sensitivity analysis
e Goal at this stage is to determine what circuits to test in
TX-TL and predict outputs
S1: linear DNA (4-8 cycles @ 2 cycles/day, 24-96 variants)
e Components from std library or PCR extension (no cloning)

e Testin TX-TL with GamS, ClpX. Try multiple circuits + vary
ratios of copy humbers (based on achievable copy #’s)

e Compare w/ models; insure we can model what we see
e Goal: downselect 4-8 designs to test in plasmids

S2: plasmids (2-4 cycles @ 2 days/cycle, 8-24 variants)
e Clone into plasmid(s), using std sequences/protocols
e \erify operation in TX-TL, incl copy number variability
e Test robustness in multiple extracts w/ varying conditions
e Match results to SO models and S1 linear DNA

S3: validate in cells (1 cycle, 4 days, 1-4 variants)
e Test top constructs from plasmid-based TX-TL assay

UC Berkeley, May 2013 Richard M. Murray, Caltech CDS/BE
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TX-TL Core Processes

Zachary Sun, Vincent Noireaux

Rapid prototyping using linear DNA
e Use PCR products with GamS to get
expression levels of ~60% of plasmid
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e Allows rapid assembly of constructs
- PCR extension for simple circuits
- IDT gBlocks + isothermal ass’y
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Living Foundries, 25 Oct 2012

Protein degradation

e Use clpXP machinery to degrade
tagged proteins
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Tested components
® RNA polymerases: E. coli*, T7
e Activators: sigma28*
e Repressors: tetR*, lacl*
e Reporters: deGFP*, MG, mSpinach
e DNA/RNA/protein deg: gamS*, clpXP*

* preliminary models also available

Murray, Rothemund, Noireaux (Caltech/UMN) I




Effects of Resource Limits

A. Untranslated gene
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UC Berkeley, May 2013

Which resources are limited?
® No evident transcriptional limits [B]

e |imited protein resources (AA, ATP)
generate significant coupling [C]

e Sigma factors sequester RNAP [D]
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TX-TL Modeling

Zoltan Tuza, Vipul Singhal, Dan Siegal-Gaskins

i % Run a simulation
[t_ode, x_ode, names)]) = sbiosimulate(well_al);

i ¥ Set up the standard TXTL tubes
tubel = txtl_extract('el');
tubeZ = txtl_buffer('bl’');

‘ptet’,
‘p70°,

‘aTe', 0.1);

' ¥ Set up a tube that will contain owr DNa
tubeld = txtl_newtube('circuit');
v dna_tetR = txtl_dna(tube3,

‘rbs', 'tetR', 100, 'linear');
v dna_gamS = txtl_dna(tubel,

‘rbs', 'gamS', 10, 'plasmid’);
! ¥ Mix the contents of the individval tubes and add some inducer

well_al = txtl_combine( [tubel, tube2, tubel3], [6, 2, 2]);
txtl_addspecies(mell_al,

Negative Autoregulation Example - Gene Expression
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Tuza, Singhal, Kim and M, CDC 2013 (s)

Resource utilization effects

e Model+TXTL shows effects of fixed
number of RNAPs and ribosomes

e Additional sigma factor gene introduces
significant ‘crosstalk’, reduces output

e Calibrated models that match experi-
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External TX-TL Circuit Testing

Circuit testing
e Stage 0: you send us cells/plasmids

e Stage 1: we perform TX-TL runs,
compare to in vivo, send back data

e Stage 2: we send you extract +
buffer, you take the data

e Stage 3: we show you how to make
extract (JOVE paper on its way)

e Stage 4: you use TX-TL on your own
Things that work

® Transcriptional circuits

e RNA-based circuits

e Phosphorylation circuits
Things that haven’t worked

e |ight-induced transcription factors

e Multi-layer cascades (resource lims)

CSHL synthetic biology course: Jul ’13

e Will use TX-TL for RNA-based circuits |

Pl (+ contact) Circuit/Technology | 01234
Lucks (CH) RNA-sensing TFs VYYY -
Del Vecchio (EY) Loading effects vV ---
Temme (VH) Orthogonal RNAPs v?---
Voigt (DSG) 4 input, 11 gene VX---
Tabor (JK) Green light sensor v ?7---
Endy (VH) DNA memory v X---
Del Vecchio (SG) Phospho-insulator vV ---
Kortemme (EdIS) Molecular sensors vo---
Jewett (YW) Butanediol pathway vo---
ILW -------- ~|
R :
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Vo plew !
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Biomolecular Breadboard Suite

Cell-free breadboard

e |Linear DNA assembly
(build on work of others)

® Implement/test 6 circuits

e Document design cycle
times (vs std cloning)

e Extract preparation video
(— JoVE)

e Predictive, modular
models for switch, IFFL,
neg fbk

e —> @ HJ
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Artificial Cells

e Kinetics of expression
inside vesicles

e Statistics of expression
and induction (% of
vesicles induced)

e Expression (and
induction) as a function
of vesicle size

Spatial Localization

e Control spatial location of
DNA, RNA, proteins
using DNA origami

e Explore effects of
distance on hybridization,
binding, scaffolding

e Demo’d transcription of
bound DNA

Prototyping and debugging of in vivo and in vitro circuits
e \ery little knowledge/infrastructure required to build in vitro circuits (try it!)
e Planning to have a workshop at Caltech in Sep 2013 for people who want to learn

Open source information

e TX-TL protocols, data, tools: http://www.openwetware.org/wiki/breadboards

UCSB, May 2013
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Some Challenges and Research Directions (BFS)

Better understanding of uncertainty
¢ How do we capture observed behavior using
structured models for (dynamic) uncertainty
Stochastic specifications and design tools

e How do we describe stochastic behavior in a
systematic and useful way?

¢ How do we design stochastic behavior?
e \What are the right design “knobs”?

Higher level design abstractions

e \What is the right “device-level” design
abstractions (above strand diagrams)?

Redundant design strategies

e Start implementing non-minimal designs
e Analogy: stochastic memory storage

Scaling up: components — devices — systems e ]
¢ How can we use in vitro “breadboarding” to = Li /’;wi =~ )
design and implement complex systems :W £ \f/ 5 T e

UIUC,Apr 2012 Richard M. Murray, Caltech CDS/BE




Analysis & Design of Biomolecular Feedback Systems

Systems Theory In Vitro Testbeds Biocircuit Design
® Role of feedback ¢ RNA-based genelets e Fast feedback mechanisms
e System identification e Biomolecular breadboards e Heterogeneous redundancy
o Effects of crosstalk ° Droplet-based automation e Systematic design methods
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Some results to date
e Role of (multiple) feedback loops in generating bimodality, robust response
e Design of rate and concentration regulation circuits (genelets + scaffold proteins)
® Time-delay as a mechanism for “design of dynamics” (mainly theory, so far)
e Prototyping/debugging using cell-free extracts (modeling/experiments, droplets/bulk)
e Effects of resource limits (TX-TL experiments, simulations + theory)
e Temperature dependence and temperature compensation
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Synthetic Biology Applications

Living Foundries
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1 Self-repairing
Custom, distributed, systems
on-demand manufacturing “cell-free” systems

Coal “cell-like”

e Conversion of input
resources to output
products in modular way

e Control systems to regu-
late metabolic pathways
and stress response

® Provide modularity and
robustness, with ability to
rapidly redesign pathway
for new input/output pairs

BE 167,9 Oct 2012

Event Detectors

—
‘ A>B |
~——— A then B
A>B

e Component technologies:
signal detection, event
memory, species com-
parison, logic functions

e Event detectors: A> B, A
followed by B, A > thresh

® |nterconnection framework:

modular techniques for
interconnecting compo-
nents and detectors

Richard M. Murray, Caltech CDS/BE

Artificial Cells

e Self-contained nanoscale
biomolecular machines

® Subsystems: chassis,
power supply, sensing
(internal and external),
actuation, regulation

e All components should
be synthetic and pro-
grammed (compiled)




