

Biomolecular Breadboards for Prototyping and Debugging Synthetic Biocircuits

Richard Murray Paul Rothemund Vincent Noireaux California Institute of Technology U. Minnesota

DARPA Living Foundries East Coast Regional Meeting
06 November 2012

Outline

- Project overview
- II. Technical results: TX-TL, biochemical wires, artificial cells
- III. Next steps
- IV. Summary of collaborations

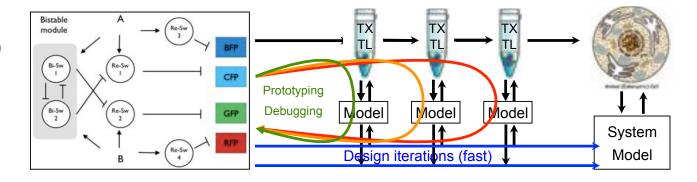
Project Goals and Approach

Goal: 10-100X reduction in cycle time

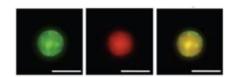
- Breadboard-based prototyping
- Predictive models
- Parallel testing

Cell-free (TX-TL)

- E. coli cytoplasm
- Linear DNA (PCR)
- Cheap: \$0.03/ul

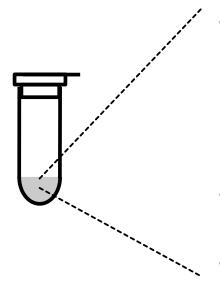

Biochemical wires

- Spatially localized reactions
- 10 um origami


Artificial cell

- Spatial constrained reactions
- 1-1000 fL volumes

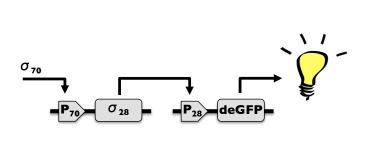
Program metric	Current	Phase I	Phase II
 Time required to go from synthesized DNA sequences to measurement of circuit performance (on cell-free and origami breadboards) 	1-2 wk	3 days	1 day
Time required to build a novel, modest complexity (6–8 unique pro- moter) circuit (existing design, novel components)	3-6 mo	1 mo	1 wk
 Number of circuits that can be tested simultaneously, varying component concentration and/or cell-free toolkit parameters 	5	25	100
 Number of genes and regulatory parts characterized, modeled and available for use in cell-free circuits (and artificial cells) 	2	5	10

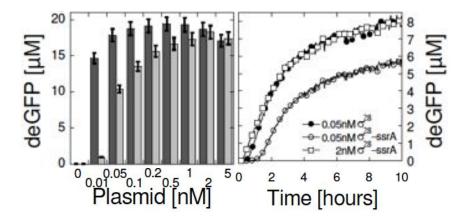


http://www.openwetware.org/wiki/breadboards

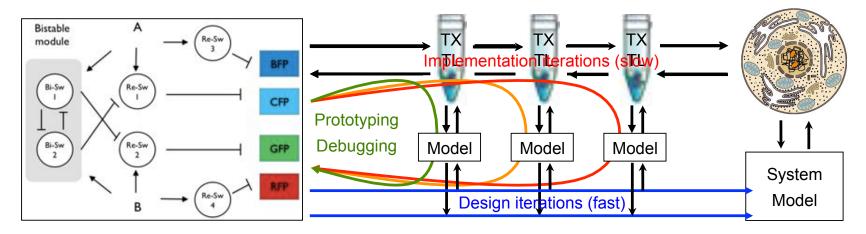
E. Coli cell-free TX-TL system

Lysate: E. coli extract.


No endogenous information


TX: housekeeping core + σ 70

TL: ribosomes, cofactors....


Reaction buffer: 30-40 components.

DNA: plasmids and PCR prepared in lab.

Task 1.1: Cell-Free Circuits Breadboard

Key characteristics of the cell-free breadboard (Noireaux et al)

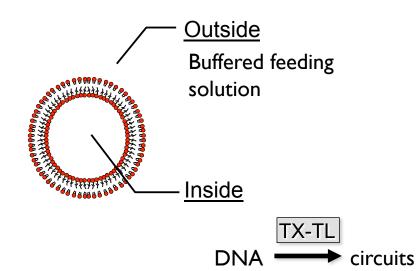
- Inexpensive and fast: ~\$0.03/ul for reactions; typical reactions run for 4-6 hours
- Easy to use: works with many plasmids or linear DNA (PCR products!)
 - Can adjust concentration to explore copy number/expression strength quickly
- Flexible environment: adjust energy level, pH, temperature, degradation

Milestones/demo for Phase I

http://www.openwetware.org/wiki/breadboards

- Q1: Post protocol on web, along with controls + summary of costs
- 80% Q2: Demonstrate breadboard on 2 circuits (eg, switch, IFFL), document iteration time
- 50% Q3: Post complete protocols + variations (degradation, energy, ...) + validated models
- 10% Q4: Demonstrate design of 6-8 promoter circuit with 3 day cycle time, 1 month total

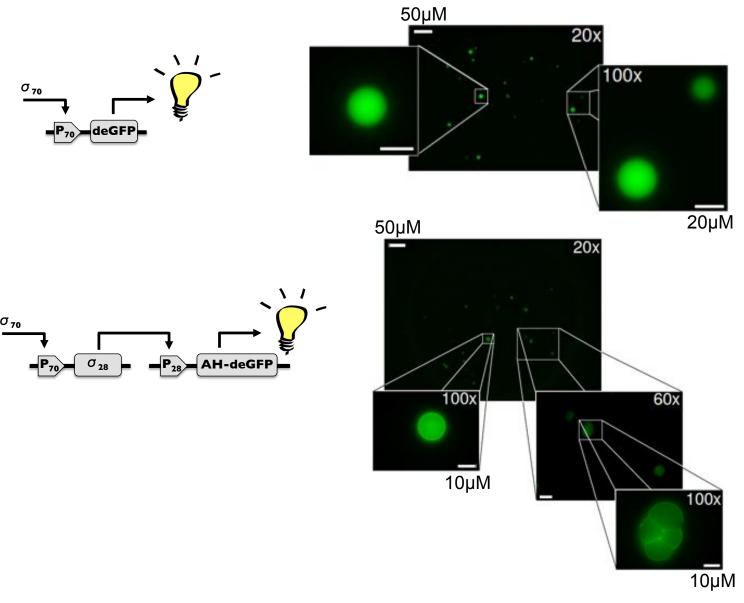
Phase II demo: 8-16 promoter circuit, 100 variations, 1 day cycle time, 1 week total


Task 1.2: Artificial Cells

Demonstrate the feasibility of a programmable synthetic phospholipid vesicle system with elementary synthetic gene circuits:

- Create cell-sized (1-50 µm diameter) synthetic phospholipid vesicles containing TX-TL system and genetically encoded circuits.
- External inducers (tetracycline, arabinose, ...) will diffuse through the membrane and activate the circuits or repress expression of fluorescent protein reporters.

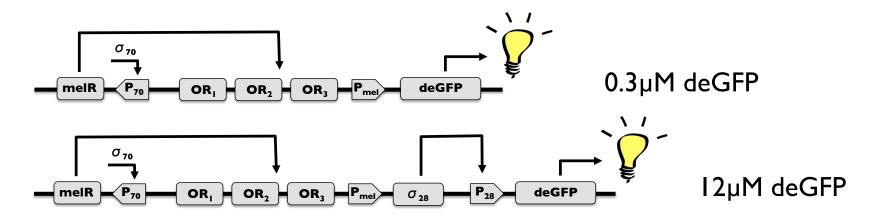
Approach


- Demonstrate stable synthetic liposomes capable of hosting transcriptional activation and repression units.
- Demonstrate activation and repression units that can be turned on and off using inducers diffusing through the membrane (arabinose, lactose, tetracycline,).

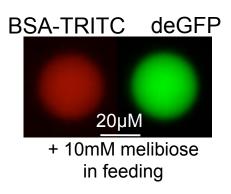
Extensions

- Changing the phospholipid composition. Now PC, objective: add 1 or 2 other lipids.
 The protocol of vesicle preparation will be adapted if needed.
- Understand the importance of the phospholipid composition for pattern formation, self-organized systems at the membrane.

Cell-free expression inside vesicles

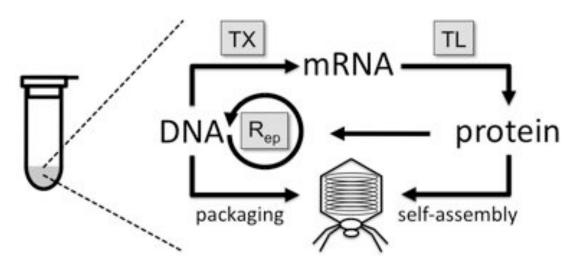


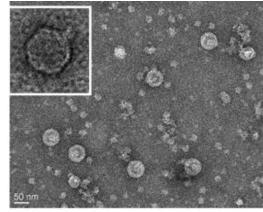

Inducible expression inside vesicles


Observations: 8 hours incubation, objective 40X σ_{70} Arabinose system: OR, OR₂ OR₃ deGFP **BSA-TRITC** deGFP deGFP **BSA-TRITC** 10µM **10μΜ** + 10mM arabinose in feeding + 0mM arabinose in feeding • Tetracycline system: OR₂ P_{LtetOI} tetR deGFP OR, **BSA-TRITC** deGFP <u>de</u>GFP **BSA-TRITC** Interaction of ATc with membrane 10µM **10**μΜ + 20µM tetracycline in feeding + 0µM tetracycline in feeding

Inducible expression inside vesicles

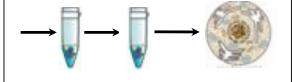
• Melibiose system: analogous to arabinose system





Genome replication, synthesis and self-assembly of the bacteriophage T7 in a single cell-free reaction

- lytic coliphage.
- 40 kbp, 60 genes (35 with known functions).
- almost host independent (2 host proteins required).
- has its own RNA polymerase.
- has its own DNA polymerase.


ACS Synthetic Biology, 2012.

Upcoming Technical Work and Goals

Cell-free breadboard

- Linear DNA assembly (build on work of others)
- Implement/test 6 circuits
- Document design cycle times (vs std cloning)
- Extract preparation video (→ JoVE?)
- Predictive, modular models for switch, IFFL, neg fbk

Artificial Cells

- Kinetics of expression inside vesicles
- Statistics of expression and induction (% of vesicles induced)
- Expression (and induction) as a function of vesicle size

Filippo Caschera

Biochemical Wires

Optimize assembly of origami wires w/ linkersTest signal carrying ability by hybridizing and dehybridizing fluorescent reportersDemo transcription of signal from genelets on microscope slides.

Open source information

- TX-TL protocols, data, tools: http://www.openwetware.org/wiki/breadboards
- TX-TL modeling library: http://www.sourceforge.net/projects/txtl
- TX-TL announcements mailing list: http://groups.google.com/d/forum/txtl-announce

Collaborations and Needs

TX-TL circuit testing

- Cornell (Lucks)
- Pivot Bio (Temme)
- MIT (Voigt)
- MIT (Del Vecchio)
- Hutchison (JCVI)
- Hoping to make all TXTL data available on internal LF website

Laboratory automation

- Stanford/Advanced Liquid Logic
- Visiting ALL on 8 Nov to work through details of TXTL based protocols
- Hoping to make use of Stanford protocols as they become available

Living Foundries web site

- Boyden, Lucks, Murray
- Draft site set up
- Would like to use for posting presentations (east/west coast LF meetings) + internal data
- Looking for volunteers to help test & maintain

What we need from others

- Help in trying out the protocols and identifying things that work and don't work
 - Protocols available on web: http://www.openwetware.org/wiki/breadboards
 - Workshops in Phase II, but happy to work with individuals at any time
- Larger collection of in vitro reporters (bulk + droplets); faster response times
- RNA scaffolds/origami for trying out biochemical wires in cells
- Sign up for web site: http://sites.google.com/site/livingfoundries
- TXTL announcements mailing list: http://groups.google.com/d/forum/txtl-announce