
Biomolecular Breadboards for Prototyping and Debugging

Richard Murray Paul Rothemund
California Institute of Technology

Vincent Noireaux U. Minnesota

Goal: >10X reduction in design cycle time

- Breadboard-based prototyping
- Parallel testing (plate reader + droplets)
- MATLAB-based TX-TL modeling toolbox

Cell-free extract (TX-TL)

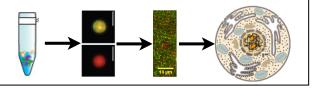
- E. coli-based extract, with processing
- Allows linear DNA (PCR products)
- Cheap: \$0.03/ul Fast: 1 day cycle time

Artificial cell (phospholipid vesicles)

- Spatial constrained reactions
- 1-1000 fL volumes via vesicles

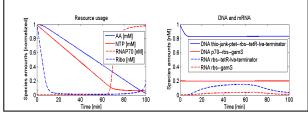
Spatial localization (DNA origami)

- Spatially localized reactions
- 10 um ribbons [+ 50 x 50 arrays]

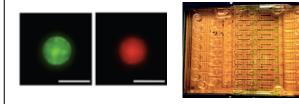

Circuit testing

• Testing LF partner circuits in TX-TL

Accomplishments to Date (Q3 highlighted)


TX-TL cell-free toolbox

- \$0.03/ul, 1 day cycle time
- Linear DNA (w/ protect'n)
- Protein degradation (via YbaQ and ssrA tags)
- Detailed protocols (JoVE)
- Circuits: switch, IFFL, toxin-antitoxin + partners
- Next: design 3-6 gene circuit, in vitro → in vivo


TX-TL modeling toolbox

- MATLAB (Simbiology) based toolbox with 10 line circuit specs
- Validated models for gene expression, regulation, w/ resource lims
- Full source code and user documentation available on web

TX-TL vesicles & droplets

- Inducer-based expression in droplets
- Time course measurements of reporters in 0.3
 µl droplets on ALL R110
- Next: protocols for mixing, merging, splitting plus improved imaging

Open source information

- TX-TL protocols, data, tools: http://www.openwetware.org/wiki/breadboards
- TX-TL modeling library: http://www.sourceforge.net/projects/txtl
- TX-TL announcements mailing list: http://groups.google.com/d/forum/txtl-announce

Collaborations, Impact and Needs

TX-TL circuit testing (LF and [non-LF])

- Cornell (Lucks) RNA sensing TFs
- Pivot Bio (Temme) orthogonal RNAPs
- MIT (Voigt) 11 gene logic circuit
- MIT (Del Vecchio) Resource limits
- Hutchison (JCVI) DNA replication
- Silver (Harvard) RNA scaffolds
- [Tabor (Rice)] light inducible TFs
- [Kortemme (UCSF)] small molecule sensors
- [Seigal-Gaskins (Caltech)] toxin-antitoxin (TA)

Lessons learned so far

- Many mechanisms do not work directly in TX-TL on first try
 - Reporters often too weak
 - Resource limits get in the way
- Fast design/test cycles are possible
 - Eg: daily test cycles for toxinantitoxin systems
- Models give good insights
 - Eg: effects of resource limits

Droplet-based automation (with ALL) - appears very powerful; need to exploit!

Phase II plans and ideas

- Move toward integrated set of testbeds (TX-TL bulk, droplet, vesicle, origami)
- Increase role and use of models as primary mechanism in design cycles
 - Allows mapping between breadboards and cells, including normalizing for limits
- Increase role and available of debugging tools in TX-TL (especially for composition)
 - Need a library of mRNA and protein-based reporters that can be added in
- Increase use of laboratory automation (ALL droplet system, nano-spotter, LH robot)