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Motivation: Flight Control Trends

Features of highly aggressive, flight vehicles
» Talllessflight for LO [J non-conventional control surfaces
* Uninhabited flight: pilots at remote locations [1 controllers have to do more
» Costisincreasingly afactor (especially for UAV's) + reduced devel opment time
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Approach: Two Degree of Freedom Design

Nonlinear design Linear design
* global nonlinearities
e input saturation A |«
* state space constraints
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» Use real-time trgjectory generation to construct (suboptimal) feasible trajectories
» Uselocal linear/nonlinear control for tracking & robust performance
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Stabilization in the Presence of Magn/Rate Constraints
Lauvdal, Murray, Fossen (GNC 97, CDC 97)
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Basic idea: rescale the control law when can actuator saturates
e Linear scaling of gain does not work (frozen system unstable)
* Nonlinear, dynamic scaling is required for stability and performance
Features
* Leaveslinear control design unchanged when away from limits (nonlinear wrapper)
* Requires state feedback controller (so far); theory available only for restricted cases
Related work by Teel, Megretski, Feron, and others
 Solve online Ricatti equation or use Lyapunov-based technique; state-based scaling
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Main Idea: Nonlinear Rescaling to Preserve Damping Ratio
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* Actual update law more complicated -
» Balance decay/recovery rates
* Messy proof (see GNC, CDC papers) t
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| mplementation on Caltech
Ducted Fan

Features
* Integrated fan/wing assembly
* Linear bearings, counterweight
* FHoor, wrist slip rings
Usage
* Fatness implementation
* Magn/rate limit control
Dynamics
* Approx (2,4) integrator chains

Flap Paddles Ducted
Fan




Step altitude change: 20 deg/srate limit, no rescaling
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Step altitude change: 20 deg/srate limit, dynamic rescaling

Altitude Pitch
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Comparison: 10 deg/srate limit
Altitude Gamma
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Richard Murray:
Need to add

1eory: Rescaling for Homogeneous Systems

equation P.Morin, L. Praly, R. Murray (NOLCOS 98)

describing basis
functions (alpha) | (X) + g(X)u

t t With respect to dilation
Homogeneous Homogeneous r=(r )
order 1< 0 order 1< 0 Vb
Nominal control: u= a(x)
Lyapunov function:  V(x) > 0,V <0 Features
Rescaled control: « Extends M'Closkey
V() = A (9aP . ()] . “Explains” Lauvdal
A(X)
\ ) \ ) » Generalizes to non-
_ homogeneous systen
Rescale Scale state to V=1 (local approximation)
control

Thm GAS + v(x) homogeneous order O (L bounded)
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Trajectory Tracking Using Differential Flatness

-
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f (X, u) X = X(z 2...,2%)
h(x, u, u,..., u(p)) +«—> UuU=Uuzz..., Z(q))
U <L

N
[

Complicated constraints

Flat systems allow dynamic problemsto be converted to algebra
* Solve spline problem with end constraints to generate feasible trajectory
* Input constraints become complicated, but still algebraic

Many interesting systems are flat
* All linear, feedback linearizable, chained, pure fbk form systems are flat
» Convential aircraft are approximately flat
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Special Case: Linear Systems
Joint work with Sunil Agrawal (U. Del)

X = AX + Bu u[O,T]
z = Cx Xo ~"> X
™ Flat output |U| < L, |U| < L,

Linear everything [ solution is essentially alinear programming problem
Xy > X O Ma = c

u < L,u <L, o G(tg < d
/

Linear combinations Must hold for
of ¢@)(t) every timet

Q: Aretheregood (easy) waysto solve thisproblem in real-time
 Convert to discrete time? Basis functions?
* Keep in mind nonlinear case, if possible
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Trajectory Generation with Constraints
S. Agrawal, N. Faiz, R. Murray (IFAC 99)

z=®t) + > ag () Hoz+Hz+--+HZP +d <0

H_l -
T A Chooseto satisfy constraints (null space)
Satisfies end conditions
A
Approach #1: Collocation (evaluate at {t}) 4
Gt)a +d < O \

* VVery similar to grasping problems Z » O,

 Can track intersection points for speed /
Approach #2: Use basis functions

 Gives guaranteed results, but can be conservative
» Choose basis functions based on dynamics (in progress)
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Experimental Evaluation of Real-Time Algorithm
S. Agrawal, N. Faiz (U. Delaware)
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Coupled spring-mass system

0.03

 Use third mass as control input; second

mass tries to track first (pursuit problem) 00z

» Constraint on mass positions and
magnitude of input force

001

 Real-time trgectory generation, tracking

and constraint update

-0.01F

o 6 constraints, 3 collocation points, 2 modes

[0 18 inequalitiesin 2 variables
o 20 msec to compute trgjectory
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Summary and Future Work

Thrusts: stabilization and real-timetraj gen in presence of magn/rate constraints
* Stabilization using dynamic rescaling
* Real-time trgjectory generation for flat systems
* Motivated by increasing demand for aggressive motion control (uninhabited)

Current work (M. Milam, H. Streumper)
* Focused on real-time trajectory generation + surface allocation
» Comparison between real-time optimal & geometry-based approaches

Open issues
* Flatness based solutions are too restrictive; can we extend geometry to other classes
» Choice of basis functions to exploit dynamics/constraints, minimize computation
* State-based rescaling vs dynamic rescaling: need better comparison/understanding
* Missing theory for current industry allocation techniques (eg, RESTORE)
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