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Motivation: Flight Control Trends

Features of highly aggressive, flight vehicles

é Tailless flight for LO ⇒ non-conventional control surfaces

é Uninhabited flight: pilots at remote locations ⇒ controllers have to do more

é Cost is increasingly a factor (especially for UAVs) + reduced development time
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Approach: Two Degree of Freedom Design

é Use real-time trajectory generation to construct (suboptimal) feasible trajectories

é Use local linear/nonlinear control for tracking & robust performance
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Stabilization in the Presence of Magn/Rate Constraints
Lauvdal, Murray, Fossen (GNC 97, CDC 97)

Basic idea: rescale the control law when can actuator saturates

é Linear scaling of gain does not work (frozen system unstable)

é Nonlinear, dynamic scaling is required for stability and performance

Features

é Leaves linear control design unchanged when away from limits (nonlinear wrapper)

é Requires state feedback controller (so far); theory available only for restricted cases

Related work by Teel, Megretski, Feron, and others

é Solve online Ricatti equation or use Lyapunov-based technique; state-based scaling
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Main Idea: Nonlinear Rescaling to Preserve Damping Ratio

é Actual update law more complicated

é Balance decay/recovery rates

é Messy proof (see GNC, CDC papers)
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Fan

Implementation on Caltech 
Ducted Fan

Features

é Integrated fan/wing assembly

é Linear bearings, counterweight

é Floor, wrist slip rings

Usage

é Flatness implementation

é Magn/rate limit control

Dynamics

é Approx (2,4) integrator chains
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Step altitude change: 20 deg/s rate limit, no rescaling
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Step altitude change: 20 deg/s rate limit, dynamic rescaling
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Comparison: 10 deg/s rate limit
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Theory: Rescaling for Homogeneous Systems
P. Morin, L. Praly, R. Murray (NOLCOS 98)

Nominal control: u = α(x)

Lyapunov function:

Rescaled control:
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Features

• Extends M’Closkey

• “Explains” Lauvdal

• Generalizes to non-
homogeneous system 
(local approximation)

Richard Murray:

Need to add 
equation 
describing basis 
functions (alpha)
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Trajectory Tracking Using Differential Flatness

Flat systems allow dynamic problems to be converted to algebra

é Solve spline problem with end constraints to generate feasible trajectory

é Input constraints become complicated, but still algebraic

Many interesting systems are flat

é All linear, feedback linearizable, chained, pure fbk form systems are flat

é Convential aircraft are approximately flat
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Special Case: Linear Systems
Joint work with Sunil Agrawal (U. Del)

Q: Are there good (easy) ways to solve this problem in real-time

é Convert to discrete time?  Basis functions?

é Keep in mind nonlinear case, if possible
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Approach #1: Collocation (evaluate at {ti})

é Very similar to grasping problems

é Can track intersection points for speed

Approach #2: Use basis functions

é Gives guaranteed results, but can be conservative

é Choose basis functions based on dynamics (in progress)

Trajectory Generation with Constraints
S. Agrawal, N. Faiz, R. Murray (IFAC 99)
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Experimental Evaluation of Real-Time Algorithm
S. Agrawal, N. Faiz (U. Delaware)

Coupled spring-mass system

é Use third mass as control input; second 
mass tries to track first (pursuit problem)

é Constraint on mass positions and 
magnitude of input force

é Real-time trajectory generation, tracking 
and constraint update
ß 6 constraints, 3 collocation points, 2 modes 

⇒ 18 inequalities in 2 variables

ß 20 msec to compute trajectory
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Summary and Future Work

Thrusts: stabilization and real-time traj gen in presence of magn/rate constraints

é Stabilization using dynamic rescaling

é Real-time trajectory generation for flat systems

é Motivated by increasing demand for aggressive motion control (uninhabited)

Current work (M. Milam, H. Streumper)
é Focused on real-time trajectory generation + surface allocation

é Comparison between real-time optimal & geometry-based approaches

Open issues

é Flatness based solutions are too restrictive; can we extend geometry to other classes

é Choice of basis functions to exploit dynamics/constraints, minimize computation

é State-based rescaling vs dynamic rescaling: need better comparison/understanding

é Missing theory for current industry allocation techniques (eg, RESTORE)


