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Abstract

Shannon’s Coding Theorem shows that in order to reliably
transmit a message of T bits over a noisy communication
channel, only a constant slowdown factor is necessary in the
case when the channel is noisy, relative to the case in which
the channel is noiseless. (The time required is asymptotically
T%, where 0 < C <1 is the “Shannon capacity”, a function
only of the noise characteristics.) The theorem ensures that
the probability of a decoding error is exponentially small in
the message length T. Recently the second author obtained
an analogous result for arbitrary interactive communication
protocols between two processors.

In the present paper we provide a coding theorem for all
distributed protocols on static topology networks. We prove
that any protocol which runs in time T on a network of de-
gree d having noiseless communication channels, can, if the
channels are in fact noisy (each a binary symmetric channel
of capacity C), be simulated on that network in time pro-
portional to T% log(d + 1). The probability of failure of the
protocol s exponentially small in T'.

We also provide specialized results for the problem of
broadcasting data over a noisy chain of processors.

1 Introduction

This paper is concerned with the question of whether it is
possible to sustain distributed computation in the presence
of noise; and if so, at what cost in efficiency and reliability.

Shannon in his classical coding theorem showed that data
can successfully and efficiently be transmitted in a noisy
environment [27]. The outstanding features of the theorem
are first, that if a large block of data is to be transmitted over
a noisy channel, the transmission need slow down by only a
constant factor (relative to the noiseless case) and second,
that one can achieve an error probability exponentially small
in the length of the block of data.

Data transmission is an elementary step in computation:
this is overt in distributed or parallel computation, but is
also true of sequential computers, where almost invariably,
several logical units are involved.

This leads to the question: if a computation is being
performed by several processors linked in a network, and if
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the communications in this network are unreliable, what is
the effect on the efficiency and reliability with which this
computation can be performed?

In the main result of the present paper, we address this
question by providing a network analog of Shannon’s coding
theorem. We show that a distributed protocol which runs on
a network of degree d can be simulated, if the links of that
network are noisy, with a slow-down factor proportional to
log(d + 1) and with probability of error exponentially small
in the length of the original protocol.

In this we extend a recent result of Schulman[26] in which
such a coding theorem was shown for any interactive proto-
col involving two processors.

The physical context for this work is simply that noise is
an inherent characteristic of physical systems; and, in partic-
ular, of communications hardware. As computing systems
grow, so does the necessity of dealing with such noise either
by “overbuilding” the hardware to make it error-free; by
introducing redundant hardware; or by implementing error-
correction in software.

In contrast to physical computers, machine-based mod-
els of computing typically take noise-free devices as their
basis: e.g. Turing machines, cellular automata, formal cir-
cuits, and parallel and distributed systems. Much work has
been driven by the need to bridge this gap between model
and reality. The first investigations in this direction were
by Shannon in 1948 [27], for the problem of data transmis-
sion over noisy links; and by von Neumann in 1956 [34],
for the problem of computation by circuits with unreliable
components.

This paper is a further contribution toward bridging the
gap between noiseless models, and noisy reality. The model
we address is closest to a distributed system (or a single
computer with several processors). In this case, the indi-
vidual processors are computationally macroscopic; corre-
spondingly in our model the processors are capable of ex-
tensive computing. Further, we assume that all noise in our
system occurs on the communication links between the pro-
cessors, and not in their internal computations. (This is a
useful model because the error rate on a long communication
link may be significantly worse than that inside a localized
Processor. )

1.1 Background

We very briefly review some of the extensive literature re-
lating noisy and noiseless models. The foundational results
of both Shannon and von Neumann were essentially positive
statements. Shannon in his foundational work described the



notion of the capacity of a communication link, and showed
that data can be transmitted with high reliability across the
link at any rate below capacity. He also showed a converse
to this coding theorem, namely that communication fails
at any rate above capacity; but the striking technological
implication lay in the coding theorem itself, which showed
that “modulo coding theory”, one may as well think of data
transmission in a noise-free model. The Shannon theory
applies to a wide class of channels; its essential character-
istics however are already present in the case of a binary
symmetric channel, one in which in each transmission, inde-
pendently of all prior events, the transmitted bit is flipped
with fixed probability € < 1/2. Therefore in this paper we
will focus on this noise model.

Von Neumann’s work, in conjunction with later work
by Dobrushin and Ortyukov [3, 4], Pippenger [17], Pip-
penger Stamoulis and Tsitsiklis [20], Gal [9] and Reischuk
and Schmeltz [23], shows that a logarithmic factor over-
head in size 1s always sufficient, and sometimes necessary,
for the simulation of noiseless by noisy circuits. (Here it
is understood that each circuit component malfunctions in-
dependently with constant probability. Pippenger has also
explored more general noise models [19].) Furthermore, von
Neumann showed that only a constant factor overhead in
depth was needed in going from noiseless to noisy circuits;
that a factor greater than 1 was, in fact, sometimes neces-
sary was demonstrated by Pippenger [18], and the form of
the lower bound was later improved by Feder [6] and Evans
and Schulman [5].

The noise-resilient circuits described by von Neumann
and in the subsequent literature, are not embeddable with-
out significant edge dilation in finite dimension. Since longer
wires are more likely to malfunction, the question naturally
arose of whether computation can persist in the more restric-
tive model of noisy cellular automata. Affirmative answers
in this regard were supplied by Taylor [28], Toom [30, 31, 32],
Tsirel’son [33], Gécs [7] and Gécs and Reif [8].

There is an essential difference between the circuit and
cellular automata results, on the one hand, and the studies
in information and coding theory on the other. In the former
models no component of the system is assumed to be noise-
less: an entire reliable computation must be synthesized out
of individual unreliable components. In the latter situation
computations are assumed to be reliable, but communica-
tions are assumed to be error prone. The two suppositions
correspond naturally to a fine-grained modeling of a system
and a coarse grained modeling of it. Our work is in the latter
line: The study of what is feasible when encoding, decoding
and other local computation can be implemented cheaply
and reliably at each processor in the course of a protocol.

One case of this question was proposed by El Gamal
and studied by Gallager [10]. They considered a complete
network of noisy links among N processors, and a restricted
communication model: in each round, a processor is allowed
to broadcast some bit to the entire system. (The noise events
on each channel are independent.) Each processor starts
the computation with some private bit, and the goal of the
computation is for all processors to learn all the bits'. The
cost of the computation is measured as the total number
of broadcasts. The naive protocol for this problem requires

1Actually the stated goal was just to compute the parity of the
bits, but Gallager’s protocol as well as others we are aware of, solve
the harder problem with the same effort, and no lower bound is known
to separate the two problems.

O(Nlog N) broadcasts, but Gallager showed how to accom-
plish the computation with only O(N loglog N') broadcasts.
It is a very interesting question whether this is best possible.

We are concerned in this paper with communication as
a resource for computation. An essential aspect of this set-
ting is the interactive communication that is needed between
processors. In contrast, in information theory and coding
theory communication has been viewed entirely in terms of
the data transmission problem (even in those papers which
studied the benefits for data transmission, of feedback from
the recipient to the transmitter).

The interactive model for communication complexity, in
which the input to a problem is split between two processors
linked by a noiseless channel, was introduced by Yao [35].
The model was devised to measure the cost incurred in de-
parting from the single-processor model of computation. It
has since been intensively investigated (e.g. [36, 16, 29, 11];
and see [12] for a survey).

The effect of noise upon this model was studied by Schul-
man [24, 25, 26], who proved an analog of Shannon’s coding
theorem showing that any interactive protocol for a pair
of processors, designed for a noiseless communication link,
could be simulated on a noisy link with only constant com-
munication overhead. This result opened the way to the
following basic question which was posed in [24, 25]: can
the coding theorem for interactive protocols be extended to
the efficient simulation of noiseless distributed protocols, on
networks with noise?

1.2 Overview of this Paper

We answer the above question by providing a “compiler” for
distributed protocols which, given the description of a pro-
tocol which runs on a certain network with noiseless links,
converts the protocol into one which runs on the same net-
work but with noisy links. Our result is:

Theorem 1.1 Any protocol which runs in time T on an
N-processor network of degree d having noiseless communi-
cation channels, can, if the channels are in fact noisy (each
a binary symmetric channel of capacity C, 0 < C < 1),
be simulated on that network in time O(T%log(d + 1)+
% log N). The probability of failure of the protocol is e~ M,

By comparison, Shannon’s original coding theorem states
that a block of T' bits of data can be transmitted across such
a channel in time O(T%)7 with error probability e~ *(T):
and Schulman’s paper describes a “compiler” for arbitrary
noiseless communication protocols of length 7' between two
processors, which guarantees a running time of O(T%) and
error probability e~ HD)

There are two principal ideas used in obtaining our re-
sults. The first is that in our protocol, errors in the system
that have a “space-like” separation — that occur closer in
time than the distance between them in the network — cause
no more delay to the protocol than a single error. This al-
lows us to make an argument of a type that has come to
be known as a ‘delay sequence argument’. This type of ar-
gument has been successfully employed in various contexts:
for instance by Aleliunas [1], Luby [13], and Martel, Sub-
ramonian and Park [14] in parallel communications; and by
Ranade in routing [22] and load balancing [21]. The second
is a coding technique, tree codes, introduced in [26].

Two major difficulties remain concerning theorem 1.1.
The first is that, while there is an existence proof for the



type of codes employed in our proof — the “tree codes” —
no explicit construction of such codes is known. The second
is that, even given an explicit tree code, the computational
overhead involved in certain decoding steps of our protocol,
is exponential in 7. Both of these difficulties parallel those
which remained following the original proof of Shannon’s
coding theorem.

There is one very special case of the general network
problem, however, in which we can provide a protocol which
is not burdened by these computational difficulties. The
problem is this: transmit B bits from end to end of a chain
of N processors. Of course in the absence of noise this can
be accomplished in time N + B — 2. The network here is as
simple as can be, and so is the problem statement, just data
transmission. Remarkably, no time-efficient solution seems
to have been provided for this problem until very recently
when Nisan and Parnas [15] analyzed the case in which the
processors are connected by binary erasure channels. (Chan-
nels which sometimes output “Error” but never the wrong
bit.) Specifically, Nisan and Parnas showed that if the bits
are “pipelined” through the chain, then except for an event
of probability e_ﬂ(N‘i'B), the last bit will arrive at the end
of the chain within time O(N + B). We address the case
in which (as in the rest of our paper) the channels are bi-
nary symmetric. In this case, even the problem of efficiently
transmitting a single bit (B = 1) from end to end appears
to be not entirely trivial.

Let the probability of error in the channels be (1 —4§)/2
for some 0 < § < 1. Asindicated, our first result concerning
the chain broadcast problem is an efficient protocol:

Theorem 1.2 A B bit message can be transmitted from end
to end of an array of N processors interconnected by binary
symmetric channels in time O((B+ N) - eo(1°g*(B+N))). All
computations necessary for the protocol are polynomzeal time
in B+ N. The probability of an error in transmission is at
most e BTN

Our second result concerning this problem is a lower
bound showing that the noise on the channels does force
the broadcast to be slower than it would be in the absence
of noise:

Theorem 1.3 Suppose that each input bit 0,1 s equally
likely. Then for any v < 1, for sufficiently large values of
n, any bit which is computed at processor n at time (n —
1)v/6 + 1 can be equal to the input bit with probability at
most 1/2 + o(1).

2 The Network Model

Consider a network N with processor set V and intercon-
nections F executing a synchronous distributed protocol I1.
We use the letter d to denote the maximum degree of any
vertex. In Il each processor repeats the following three steps
in sequence in each time step:

o Receive a bit on each incoming link.
e Do a local computation.
e Transmit a bit on each outgoing link.

The bit transmitted by processor p on link (p, q) at the end
of time step ¢ is received at processor ¢ at the inception of
time step ¢+ 1.

Formally a protocol II on a network A is a collection of
functions {IT*}, one for each processor p in the network. Let
indeg(p) and outdeg(p) denote the in-degree and out-degree
of processor p. (How many processors can send messages to,
and receive messages from, p. Typically the communication
links are bidirectional but we do not require this.) Each
function II” maps indeg(p) binary strings
al(t), .., afndeg(p) (¢), each of length ¢, to an outdeg(p)-tuple

of bits:

07(0) = (20, T2 e ()

Each string af(¢) is the history of all bits that have been
received at processor p by time t along the ’th incoming
edge to p. Each bit Hf(t) is the response of the processor
along it’s j’th outgoing edge.

3 The Simulation Protocol

In this section we describe a simulation protocol ¥ which
turns an arbitrary network protocol II, designed for use on
a noiseless network, into one which runs successfully with
high probability even if the channels are noisy.

3.1 Communication using Tree-Coded Channels

In %, as we will describe it, processors will use three symbols,
{0, 1,bkp}, to communicate with each other. Two steps will
be required to turn such a symbol into a binary string for
transmission on a channel:

T: Encoding of the symbol using a ternary tree code.

x: Encoding of the tree code letter into a binary string,
using a code for data transmission.

We will speak abstractly of a tree-coded channel as one
in which transmissions are encoded using these two steps,
and decoded using a matching two step process.

In order to explain this process we briefly describe tree
codes. For more detail on this subject see [26]. A ternary
tree code is a ternary tree (each internal node has 3 children)
whose edges are labelled with characters chosen from S, a
finite alphabet. To encode a string = € {0, 1, bkp}”* of length
t using a tree code T, we set T (z) to be the concatenation
of the characters found on the simple path from the root, to
the vertex of the tree representing z.

If s = (81...8m) and r = (r1...r;n) are words of the same
length over S, say that the distance D(s,r) between s and
r is the number of positions ¢ in which s; # r; (Hamming
distance). A ternary tree of depth n is a rooted tree in which
every internal node has 3 children, and every leaf is at depth
n (the root is at depth 0).

Definition 3.1.1 A ternary tree code over alphabet S and
of depth n is a ternary tree of depth n in which every arc of
the tree is labeled with a character from the alphabet S subject
to the following condition. Let vi and vz be any two nodes at
some common depth h in the tree, and whose least common
ancestor is at some depth h—1. Let W(v1) and W (v2) be the
concatenation of the letters on the arcs leading from the root
to v and vy respectively. Then D(W(v1), W (v2)) > 1/3.
(See figure 1).

The key fact regarding tree codes is:



Lemma 3.1.2 ([26]) There is a finite s such that an al-
phabet S of size s suffices to label a ternary tree code of any
depth.

Figure 1: The figure exhibits the distinguishing property of
tree codes. The strings v1 and vy may differ very little, but
their tree code representations differ in /3 character positions
where [ is the height of the subtree pictured here.

Thus the first step of the encoding described above, is
accomplished as follows: let & € {0,1,bkp}" be the past
history of transmissions from processor p to processor ¢, and
suppose that processor p now wishes to send a character a €
{0,1,bkp}. Then the product of this step of the encoding
is the letter of S which is inscribed on the arc between the
vertices T (z) and T (za).

In the second step of the encoding, the letter of S is
encoded as a binary string using a data transmission code x :
S — {0, 1}*. We will refer to the parameter k as the dilation
of the tree-coded channel. (We will later specify the range
for k that is useful for our purpose.) Finally this resulting
string is transmitted across the binary noisy channel.

Decoding of a tree-coded channel is accomplished as fol-
lows:

x~!: Decode the received k-bit string into a letter of S using
the decoding algorithm for the data transmission code.

T~!: Decode the tree code using the following maximum
likelihood criterion: If § is the received tree code string
(the concatenation of all letters of S decoded using x ™'
in the present and previous rounds) then decode to the
string #=7 () which maximizes P(§|z) among all
strings = € {0, 1,bkp}”*.

Define an edge character error to be the event that a tree
code character is corrupted during transmission across an
edge, i.e. that for a transmitted character a € .5, the noise
is such that x~'(y(a) 4 noise) # a. Observe that the prob-
ability of an edge character error decreases exponentially in
k. Say also that a processor character error (which we will
occasionally refer to simply as a character error) occurs at
processor p at time ¢ if p makes an edge character error in
decoding any of the characters it has received in that round
from its various neighbors.

In addition to the character errors, there is another type
of error we need to consider. Whether or not p makes a
character error in decoding the character received from a
neighbor ¢ in the current round, it may make an error in
T~!. Often these events will occur together, but they need
not: the tree code may be incorrectly decoded in spite of

correct reception of the current character, because of the
lingering effect of previous incorrect receptions; while the
tree code may be correctly decoded in spite of a current
incorrect reception, because the map from the tree code al-
phabet to {0, 1, bkp} is not injective. If p makes an error in
7! in round t for the message from one of its neighbors,
we will say that an edge tree code error has occurred on that
edge at time ¢; and if p makes such an error in round ¢ on
the message from any of its neighbors, then we will say that
a processor tree code error (or just a tree code error) has
occurred at processor p at time ¢. Hence if there is no pro-
cessor tree code error at (p,t), then p has correctly decoded
the tree codes for all of its neighbors at time ¢.

Observe that successive edge character errors on an edge
(¢, p) are almost independent events®. On the other hand,
successive edge tree code errors are not independent. To the
contrary, they are determined by many of the same channel
noise events, and so they may be significantly correlated.
Understanding the behavior of the protocol in spite of these
correlations will require some attention.

3.2 The Protocol

Communications in X are executed through the tree coded
channel mechanism, and ¥ can now be specified entirely
in terms of transmissions and receptions of characters in
{0, 1, bkp}.

Processors running 2 will in every time step either sim-
ulate one time step of II, or erase one previously simulated
step of I1. If the processor goes one step forward, then a data
bit (0 or 1) is transmitted on on each outgoing channel. If
the processor takes a step back, then the bkp character is
transmitted on every channel. More formally, if p has out-
degree outdeg(p), P(t) is either a binary outdeg(p)-tuple or
the outdeg(p)-tuple (bkp,bkp: - -, bkp).

The direction of movement is governed by the notion
of consistency which we will describe below. Observe that
there is a well defined notion at each processor p and time ¢ of
the current time step of II being simulated. We will refer to

this as the apparent time AT (p,t). If B(p, t)déf the number

of times p has backed up before time ¢, then AT(p, t)déft —

A string over {0, 1,bkp} is parsed to a string over {0, 1}
in the following way: every bkp character erases the last
preceding unerased {0,1} character (much like the Back
Space key on most keyboards)s. For instance the string
0,1,0,bkp, 1,0, 1, bkp, 1, bkp, bkp, 0 is parsed to 0,1,1,0. If
p has transmitted a sequence z(»% € {0, 1, bkp}* or received
a sequence £(®P) ¢ {0,1,bkp}"* then the parsed versions of
these strings, w®? and ®¢?) in {0, 1}, will be referred to
as the transcripts of p’s communications to and from pro-
cessor ¢ in II; the collection of these transcripts, for all in-
and out-neighbors of processor p, will be referred to as the

2They are determined by disjoint, and therefore independent, se-
quences of noise events on the channel; the only reason the edge
character errors are not entirely independent is that the distances
among various codewords of x vary, and so the probabilities of var-
ious errors depend slightly on which message is sent. This slight
non-independence will not affect the analysis and one may as well
think of the edge character errors as independent.

3 More formally, parsing follows the grammar rule (0[1)bkp — A
where A is the empty string and | allows selection. It is easily seen

that repeated application of the grammar rule on &#(0p) and (P9
results in a unique minimum length string over {0,1}.



transcript of II at p. The action taken by p in the succeed-
ing round of ¥ will be determined entirely by this transcript
(and in particular, not by any further information available
in the strings % or i:(q’p))4. Notice also, that the length
of each outgoing transcript from p at time t is exactly the
same and is equal to AT(p, ¢).

We will say that the transcript at (p,t) is consistent if
for every time 7 and every out-neighbor g of p, the 7’th
character of the output transcript w9 equals the character
specified by the protocol 11, given the prefix of the transcript
up through time 7 — 1.

There are two ways in which the transcript at (p, t) might
be inconsistent. The first is that the current transcript, as
decoded from the tree codes using max-likelihood decod-
ing, disagrees with the transcript decoded in past rounds.
(Because of either past or present decoding errors.) There-
fore some of the actions taken in past time steps may be
different from what they should have been based upon the
current transcript. The second way can occur if one of p’s
neighbors has backed up in II. In this case p may have in the
past issued some messages of [I, which are now unsubstan-
tiated since the incoming data required to determine them,
has been erased or modified. Observe that this second kind
of inconsistency can occur even if p has made no decoding
€rTors.

We can now state our protocol.

Simulation Protocol X: If the transcript is consistent, trans-

mit the data bits indicated by II; otherwise back up.

To see that this completely specifies > we need only ob-
serve that AT (p, t) = t mod 2 and therefore a set of data bits
is specified by Il unless one the the incoming transcripts is
shorter by 2 than AT(p, t) (the length of p’s outgoing tran-
scripts), in which case the transcript is inconsistent and p
will choose to back up.

4 Mechanics of the Protocol

In order to understand the protocol we will need to clas-
sify the events that can occur at a processor in any round,
into several types. The function ACTION(p,t) which takes
as argument a (processor, time) pair, will describe this clas-
sification. Note that the classification is one we make for
purpose of analysis: it is not one that the processors can
determine while they are running the protocol.

Many of the interesting phenomena in our protocol arise
already in the case of protocols on a bidirectional linear ar-
ray, and can therefore be easily illustrated (figures 2, 3). In
such an array each processor in each time step exchanges a
codeword of x with each of its two neighbors.

We first consider the possibility that a processor tree
code error occurred at processor p at time ¢. In this case
if p decided to back up, we set ACTION(p, t) = bx. On the
other hand if p decided to transmit data of II, and if any
of that data disagrees with the data that would indeed be
transmitted in IT at (p, t) on a noiseless network, then we set

4The various strings and the relationships between them are de-
scribed by the following diagram:

T-coded channel
—

z
parse |1 protocol 1l parse
w w

The strings w,w are over {0, 1}; ¢ and & are over {0,1, bkp}

AcTION(p, t) = x. Events of type x are depicted in figure 2
at (6,2),(4,5) and (10,5); and in figure 3 at (11,6). An
event of type bx is depicted in figure 3 at (7,4).

Processors ———

Time Y

oo X<

T o <<
o<

il T
o i<

i K
o<
o<

o<
o<

o<
o<

Figure 2: The figure depicts the operation of ¥ when three
errors have occurred. There is one pair of time-like errors.

A tree-code failure is not the only reason for the trans-
mission of incorrect data. It may also be that one of the
neighbors of p transmitted wrong data in the preceding
round and consequently, p transmitted erroneous data. If
such an event occurs — specifically, if there was no pro-
cessor tree code error at (p,t) but nevertheless p transmit-
ted erroneous data (which can only occur for the indicated
reason), we say that p made a propagated error, and set
AcTION(p, t) = y. A number of such errors are indicated in
figures 2 and 3.

Consider the position (6, 3) in figure 2. Since ACTION(6, 3)
is not an X or bx, processor 6 decodes each incoming message
correctly. Therefore it detects that the data it transmitted
at the end of the last time step does not correspond to the
preceding incoming data stream: thus, an inconsistency in
its transcript. Hence processor 6 backs up one step. Now
consider the position (7,4). At this stage processor 7, too,
observes an inconsistency in its transcript. The inconsis-
tency arises because processor 7 has transmitted 3 messages
of II to its neighbors even though it has received one mes-
sage from 6. Thus, processor 7’s response string is not a
prefix of the correct response string (which is of length 2),
and therefore processor 7 now backs up one step. Both of
these actions are denoted by b in figure 2. In general, we
set ACTION(p, t) = b if (a) There is no tree code error at p
at time ¢, and p backs up; (b) For at least one of p’s out-
neighbors g, there was a character in the outgoing transcript
w®9) (t—1) which was incorrect. (I.e. the character did not
agree with that which would have been transmitted in a
noiseless run of I1.) The reader can now verify that figure 2
is a faithful representation of the execution of the protocol,
for the given pattern of errors.

If condition (a) but not (b) is satisfied, we set ACTION(p, t) =

by. Consider figure 3. Here an erroneous backup, bx, occurs
at position (7,4), and causes a series of by backups. All of
these backups are spurious, and erase the good simulation
steps that occurred in the positions marked by a thick dot,
e. In this example those steps are promptly re-simulated in
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Figure 3: This figure shows an instance of a spurious backup.

the unmarked rounds following the spurious backups.

Observation 4.0.1 If a processor does not make a tree code
error (in which case ACTION is either x or bx), does not
back up (in which case ACTION is either b,by or bx), and
is not transmitting data based on erroneous information (in
which case ACTION is y) then it is necessarily successfully
semulating a round of I1. In that case we say that ACTION =
progress.

We leave the figures blank in such progress positions.

We now define the real progress RP(p, t), the key measure
of the progress of our simulation. Unlike AT(p,t), it is not
one that can be determined by the processors while they are
running the protocol. The real progress RP(p, t) is simply
the number of steps of the original protocol Il that have
been correctly simulated by processor p at time ¢. Thus for
example in figure 2, the real progress at position (4,5) is 3.
By way of contrast AT(4,5) = 5. In figure 3, RP(5,5) =5,
and RP(5,6) is 4. This decrease in the value of the real
progress is due to the spurious back up which erased a step
of meaningful computation.

A consequence of the definitions is that RP(p,t) < AT(p, t).

5 Analysis

5.1 Overview

We will prove our result by showing that with high prob-
ability, the real progress at a processor at a given time ¢
(measured in rounds during each of which a single tree code
character is transmitted over each channel), is within a con-
stant factor of ¢.

There are two key components to our analysis. The first
is to associate the delay at processor p at time ¢ with a
specific, time-like sequence of processor tree code errors in
the history cone of (p,t). We say that (p,¢) and (p',t') are
time-like if a signal leaving processor p at time ¢t can reach
processor p’ by time ¢’ (or vice versa): thus (p, t) and (p,t")
are always time-like, and (p,t) and (p, t + 1) are time-like if
p and p’ are neighbors.

If (p, t) and (p', ') are not time-like we say they are space-
like. A set {(p1,t1),...,(pn, tn)} are time-like or space-like if

every two of them are. The history cone at (p, ¢) consists of
all time-like predecessors of (p, t), and (p, t) itself.

The second component of our analysis is to argue that
with high probability, the number of processor tree code
errors (henceforth abbreviated as 7-errors) on any single
time-like path is small. Since 7 -errors are not independent
of each other, we accomplish this objective by associating
with any large time-like sequence of T-errors a large number
of “nearly time-like” processor character errors. Since char-
acter errors are essentially independent, a Chernoff bound
can then be established.

These two components are summarized in the following
two lemmas:

Lemma 5.1.1 If for a processor p, RP(p,t) =t — £, then
there is a time-like sequence of at least £/2 T-errors in the
time history cone of p at t.

Lemma 5.1.2 Choose the dilation k of the Shannon code
X to be clog(d 4+ 1)/C, for a sufficiently large constant c.
For any fized time-like sequence {(p;i,1) : 1 < @ < t}, the
probability that there are more than % T -errors in the time-

like sequence is less than m.

Since the number of time-like sequences in a simulation of
length ¢ is at most (d+1)"N where d is the largest in-degree
of any processor, the probability of any time-like sequence
having more than ¢/4 errors is at most (d+1)"N/(2(d+1))" =
N27" and the main theorem 1.1 follows if ¥ is run for twice
as many rounds as II.

The second component of the proof is accomplished by
extending a method used in [26]. In this paper, most of our
efforts will be devoted to the first component: associating
delay with a time-like sequence of tree-code errors.

5.2 Simulation Delays and Tree Code Errors

In this section we link simulation delays and time-like se-
quences of tree code errors. Let X(p,t) denote the size of
longest time-like sequence of x’s and bx’s in the history cone
of (p,t). Our main task is to show:

Proposition 5.2.1 For any processor p and any moment
i teme T,

T < RP(p,7) + X(p,7) + B(p, 7)

It will then be relatively straightforward to obtain lemma 5.1.1
from this proposition.

Proof: We prove the proposition by induction on time
7. We start with 7 = 0 in which case all the terms of the
inequality are 0. For the induction we may assume that
for time t < 7 4+ 1 and for any processor p in the network,

t <RP(p,t) + X(p,t) + B(p, t). We now show
T+1<RP(p,7+1)+ X(p, 7+ 1)+ B(p, 7+ 1).

The proof is by case analysis according to the classification
AcTION(p, 7 + 1) described in section 4. There are four
easy cases which we deal with first. If AcTioN(p, 7+ 1) =
progress, then RP(p,7 + 1) = RP(p,7) + 1 and the other
quantities are unchanged from (p, 7) (except that X may
increase); the induction follows. If AcTION(p,7 + 1) = x
then X(p, 7+1) > X(p, 7)+1 and again, the other quantities
are unchanged from (p, ) the induction follows. Similarly
if ActioN(p, 7+ 1) = b then B(p,7+ 1) = B(p,7) + 1 and

the other quantities are unchanged from (p, 7) except that



X might possibly increase; the induction follows. Finally if
AcTION(p, 7+1) = bx then both X(p, 7) and B(p, 7) increase
by 1 while RP(p, 7) may decrease. However RP(p, 7) can
decrease by at most 1 so the induction follows.

We now consider the two nontrivial cases, beginning with
AcTiON(p, 7+ 1) =y.

Lemma 5.2.1 Let AcTION(p, t+1) =y. Then the following
two conditions hold.

1. For every processor q such that (g,p) € N, B(g,t) <

2. There is a q such that (q,p) € N and RP(q,t) <
Consequently, there is a q such that (¢,p) € N, and
RP(q,t) + B(q,t) < RP(p,t) + B(p,?)

Proof: Since ACTION(p,t + 1) is neither an x nor a bx,

there was no tree code error at processor p at time ¢ + 1.

Hence for each incoming edge (g,p) € N, 0P = @),

Therefore if (1) were violated, p would have backed up; while

if (2) were violated, the data transmitted on each outgoing

channel would have been correct. a
For the g provided by the lemma we have:

RP(¢,7)+B(q,7) < RP(p,7)+ B(p,7)
= RP(p,7+1)+B(p,7+ 1)
Further since (g,p) € N, X(¢q,7) < X(p,7 + 1). Conse-
quently,
RP(g,7) + X(q,7) + B(g, 7)
< RP(p,7+1)+X(p,7+ 1)+ B(p,7+1)

Applying the induction hypothesis at g at time 7, we obtain:
7< RP(p, 7+ 1)+ X(p,7+ 1)+ B(p, 7+ 1)

Which completes the induction in this case due to the strict
inequality.

The final case is that AcTION(p, 7+1) = by. Here B(p, 7)
increases by 1 while RP(p, 7) decreases by 1. Note that
X(p, 7) does not necessarily increase. However we can es-

tablish:

Lemma 5.2.2 Let ACTION(p,t + 1) = by. Then there is a
processor q such that (g,p) € N and RP(q, t) < RP(p, ¢)—1.

Proof: The classification by implies that RP(p, t) = AT(p, t)
and that AT(q,¢) < AT(p,t). Because of the parity condi-
tion on AT it follows that AT(q,t) < AT(p,t)—1, and since
RP(g,t) < AT(q,t), the lemma follows. O

Let ¢ be as provided by the lemma, and consider two
cases. In the first case suppose that B(g,7) < B(p,7) + 1.
Then

RP(g,7) + X(q,7) + B(g, 7)
< RP(p,7)+ X(p,7+ 1)+ B(p, 7)
Since RP(p,7) 4+ B(p,7) = RP(p, 7+ 1) + B(p, 7 + 1), we
find
RP(g,7) + X(q,7) + B(g, 7)
< RP(p,7+1)+X(p,7+ 1)+ B(p,7+1)

Applying the inductive hypothesis at ¢ at time 7, we obtain:
7<RP(p, 7+ 1)+ X(p,7+ 1)+ B(p, 7+ 1)

which completes the induction for the subcase B(q,7) <
B(p,7) + 1.

In the second case B(q, 7) > B(p, 7) + 1. As observed in
the proof of the lemma 5.2.2, RP(p, t) = AT (p, t); therefore

RP(p,7) =7 —2B(p, 7)
At (g, 7) we know only that
RP(g,7) <1 —2B(q,7)
Subtracting we have:
RP(p,7) +2B(p,7) = RP(q, 7) + 2B(q, 7),
and applying the assumption B(q,7) > B(p, 7) + 1,
RP(p,7) + B(p,7) > RP(¢,7) + B(gq, 7) + 1.

As in the previous case we now use the fact that RP(p, 7) +
B(p,7) = RP(p, 7+ 1) + B(p, 7+ 1), and find:

RP(g,7) +X(g,7) + B(g, 7)
< RP(p,7+1)+X(p,7+1)+B(p, 7+ 1)

Which, applying the inductive hypothesis at ¢ at time 7,
settles this last case of the induction for the proposition. O

In order to obtain lemma 5.1.1 we observe:
Corollary 5.2.3 For any processor (p, t),
RP(p,t) > t — 2X(p, t)
Proof: Using the proposition to substitute for X we have:

RP(p,t) — t +2X(p, t)
> (- RP(p,t) - 2B(p1)

As already noted, the latter quantity is always nonnegative.
O

The corollary implies lemma 5.1.1, the first of the two
main results needed for theorem 1.1, because {/2 = (¢t —

RP(p,t))/2 < X(p,t).

5.3 Example

Figure 4 shows a large simulation and, by way of example,
a critical path of tree code errors, which justifies the delays
that have occurred in the protocol. Observe that in the
four easy cases, the critical path leads upward, to the same
processor at the previous moment; while in the two cases y
and by the critical path leads up to a neighboring processor
at the previous moment.

5.4 Tree Code Errors and Character Errors

In this section we sketch the proof of the second main lemma,
5.1.2. The difficulty in establishing this lemma is that 7-
errors are not independent. Our proof is an extension of a
method used in [26].

Proof of lemma 5.1.2. We begin by taking the union
bound over the (;,,) < 2° different ways in which ¢/4 tree
code errors could appear on this time-like path. Now fix an
error pattern on the path. We need the following observa-
tion:
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Figure 4: A time-like sequence of 6 T-errors that account for
the 12 timesteps of lost computation. Errors of type x are

indicated by x, errors of type bx are indicated by +, and the
shaded boxes indicate backup steps of type b or by.

Observation 5.4.1 By suitable choice of the constant c in
lemma 5.1.2, the probability of occurrence of any set of n
processor character errors can be bounded by exp(—c'n) for
arbitrarily large c’.

Proof: Although, for reasons noted earlier, character errors
are not exactly independent, nevertheless the conditional
probability of any character error, given any information
about the occurrence of other character errors, is bounded
by dexp(—Ck) < exp(—c'). O

Fix any processor p, and suppose the fixed error pattern
assigns [ specific T-errors to that processor. We will show
that the probability of this occurring is exponentially small
in I; moreover, by lemma 5.4.1, this will be true conditional
on any events at the other processors. The lemma 5.1.2 will
follow.

With reference to the argument in [26]: The I tree code
errors must be contained within the union of the “error in-
tervals” at p. There i1s a disjoint collection of error intervals
covering at least 1/2 of the tree code errors. If the union
of these disjoint intervals is of length m, the probability of
their occurrence is exponentially small in m. If m is sub-
stantially larger than [/2 there are many ways to select such
a set of intervals, but this union bound is dominated by the
exp(—£2(m)) probability of occurrence of any particular set
of intervals. a

6 Data Broadcast on a Chain of Processors

The protocol described above is based on tree codes. As
mentioned earlier, significant difficulties remain concerning
the computational feasibility of this protocol.

In this section we provide a computationally efficient pro-
tocol for a special case of the problem. We study the sim-
plest of network topologies, the chain, and the simplest of
network tasks, the broadcast of data. Let the first processor
in a chain of N processors have B bits to be communicated
to all the other processors. In a noiseless setting, by pipelin-
ing, this task can be carried out in time N + B — 2.

The naive strategy of sending the block in error correct-
ing code would take ©(B- N) time — since each intermediate
processor needs to receive the entire codeword before it can
proceed any further. One could divide the block of size B
into smaller blocks of size b. The running time would then
reduce to O(N - b+ B). This reduction in running time,
however, comes at the cost of increasing the failure proba-
bility from roughly e MB) to Y Moreover even if we
settle for a constant failure probability, the multiplicative
time overhead cannot be reduced below log NV in this way.

6.1 Protocol

In this section we describe a simple protocol that achieves
speed without compromising the reliability of execution. The
basic idea here is to encode the message block in error cor-
recting code; then divide the codeword into small chunks,
and send each chunk to the end of the chain by successively
transmitting it across subchains of the chain, each time us-
ing the protocol recursively. Finally after all the chunks
have reached the last processor, they are combined and the
message 1s obtained by using the decoding algorithm for the
error correcting code.

Observe that the computation in this method i1s domi-
nated by the final decoding of the error-correcting code, and
thus the method is computationally essentially as efficient
as any two-processor data transmission.

Let M = max{B, N}. Without loss of generality the
number of processors and the message length are both M.
The protocol Pas 1s described by the following four steps.

1. Encode the M bits in a 25% error correcting code £.
This results in a constant factor blow-up in the mes-
sage size. Let o > 4 be such that |E(M)| = aM.

2. Partition £(M) into chunks of bits, each of size m =
log? M. There are aM/m such chunks.

3. Use protocol Py, to transfer each chunk of m bits across
a subchain of length m. At the end of the subchain,
use P, again to send the chunk to the end of the next
subchain of length m; and so on until the end of the
chain. Pipeline the chunks one behind the other.

4. Finally when every chunk has arrived at the end of
the chain, invert the error-correcting code using the
chunks of data provided by the recursive protocols.

6.2 Analysis

Theorem 6.1 A B bit message can be transmitted across
an array of N processors interconnected by binary symmetric

channels in time O((B+N) ~eo(1°g*(B+N))). The probability

. . L. . —_Q(N+B
of an error occurring in transmission is at most e (N+B)

Proof: The base case for the analysis, constant M, is trivial
and requires only the appropriate selection of constants. In
the remainder of the proof we assume that M is large enough
for asymptotic inequalities to hold.

There are two issues to be resolved: the running time and
the error probability. We consider the running time first:

The total running time has two components. The first
is the processor broadcast time, byr. This is the length of
time each processor is occupied in broadcasting bits. (Thus
in pipelining of B bits in a noiseless chain this would be B.)
The second 1s pipeline latency, lar. This is the delay between



the moment the first bit is transmitted at the first processor,
and when the first bit is received at the last processor. (Thus
in pipelining in a noiseless chain of length N this would be
N — 1.) The runtime of our protocol is by + las.

It is convenient now to define the function L*(M) to be
the number of applications of the function log? necessary be-
fore M 1s brought below some constant threshold. Observe
that L*(M) is within a constant factor of log*(M).

We show by induction that by < MozL*M; and (for any
B >0), Iy < Ma +6)L*M. For the first of these, observe
that by = bpnaM/m = mozL*M_lon/m = Mal™™. For
the second, observe that

I = (b + b )M/ — L < (b + I )M /m
= (mozL*m + m(a +6)L*m)M/m
— M(aL*M—l +(a+ﬁ)L*M—l) < M(O{-i—ﬁ)L*M

We next show by induction that the error probability
g is bounded by ezp(—M). By induction the probability
of any of the recursive protocols erring is exp(—m), and by
taking the union bound over the number of subchains, we
can bound the probability of a chunk arriving incorrectly at
the last processor by exp(—m)M/m. The protocol Py can
err only if at least a quarter of the oM /m chunks arrive
incorrectly at the last processor, so by the Chernoff bound,

qur < [(4gm)' 1 (4(1 = ) /3)° 14121
< q?nM/4m(4(1/3)3/4)aM/m

< 6—aM/4(4(1/3)3/4)aM/m < €_M.

7 Lower bound

We demonstrate the following lower bound on the problem
of broadcasting one bit from start to end of a chain of length
n, in which each link is a binary symmetric channel, erring
with probability (1 —6)/2 on each transmission:

Theorem 7.1 Suppose that each input bit 0,1 s equally
likely. Then for any v < 1, for sufficiently large values of
n, any bit computed at processor n at time (n—1)y/6 +1 is
equal to the input bit with probability at most 1/2 + o(1).

The argument is through information theory. We will
show that the information available at processor n regarding
the input value, at the time described above, tends to 0 in
n. The implication for error probability follows by standard
arguments.

We begin with a lemma regarding information. This is
a slightly modified version of a lemma of Pippenger [18].

Let X be random variable which we interpret as “data”.
Let Y be a random variable which depends on X through
some arbitrary channel. We will think of ¥ as referring to
the entire sequence of receptions at some processor k of the
chain, up through time ¢. Let Z = (Z1, Z2) be a random
variable which depends on Y through a binary symmetric
channel which errs with probability (1 — 6)/2. We think of
7 as the entire sequence of receptions at processor k + 1 of
the chain, up through time t+1. Z5 denotes just the last bit
received over the channel, at time t+1, while Z; denotes the
entire sequence of previous receptions across the channel.

Lemma 7.0.1 [(X;Z2) < (1-6)1(X;Z1)+6I(X;Y).

Proof: Let H be a binary random variable which is 1 w.
prob. 1 — 6. Let R be a binary random variable which is 1
w. prob. 1/2. Z; is equivalent to a binary variable defined
as follows: If H = 1 then it is equal to R; otherwise it is
equal to the bit sent by Y.

In the former case I[(X;Z|H = 1) = I(X;Z); in the
latter case we use just the data processing lemma, to obtain
I(X;Z|H=0) <I(X;Y).

IX;2)<I(X;ZH)<(1-8)I(X;Z)+6I(X;Y). O

The inequality obtained above implies that the informa-
tion at processor k at time ¢ can be bounded by the function
f(k, t) defined in the following way:

o f(0,t) =1Vt
o flkyt+1)=(1=8f(k,)+5f(k—1,1).

This function is:

t—(k—1) .
_ k=1 _ syt—j—(k—1) [ L=
f(k,t)y=96 El 51 = 6) (k—l)'
=

Each term in this summation is the probability that, in a
Bernoulli process where Heads come up with probability ¢,
exactly kK — 1 Heads came up in the first ¢ — j trials. For
t—j < (k—1)/6, it is easily shown that the largest term in
the summation is that for which 7 = 1. Hence

Flhot) < (6= k+1)6"(1 = )" (li - 11) :
Now parameterize t(k) = (k — 1)v/d + 1.
Corollary 7.0.2 For any v < 1, im0 f(k,t(k)) = 0.

Proof: The Chernoff bound shows that

k—1
Thus
Flkt) < (k= 1) (v — 5)6—2(/%—1)5(1—7)2/7.

This converges to 0 in the limit & — oo. a

8 Discussion

The question of explicitly constructing tree codes is a beauti-
ful problem which remains unresolved. This question may be
formalized by asking for an algorithm which in time poly(n)
names the letter of S on any specified edge of a tree of depth
n.

In addition, it would be highly desirable to make the
computations associated with the protocol for theorem 1.1,
effective. The max-likelihood criterion we employ for de-
coding tree codes requires a computational overhead that is
exponential in the communication complexity.
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