
Automatic Synthesis of Controllers for

Distributed Assembly and Formation Forming

Eric Klavins

Computer Science Department
California Institute of Technology

Pasadena, CA 91125
klavins@cs.caltech.edu

Abstract

We consider the task of assembling a large number of
self controlled parts (or robots) into copies of a pre-
scribed assembly (or formation). In particular, we in-
troduce a way to synthesize, from a specification of the
desired assembly, local controllers to be used by each
part which, when taken together, have the global effect
of assembling the parts. We pay careful attention to
the time and space complexity of the synthesis proce-
dure, showing that the size of the representation of the
synthesized controller is polynomial in the size of the
specification and that the computational power needed
by the controller is low.

1 Introduction

We consider the problem of controlling hundreds of
robots to perform a task in concert. This problem
presents many fundamental issues to robotics, control
theory and computer science. With a great number
of robots, decentralization is critical due to the cost of
communication and the need for fault tolerance. In de-
centralized control, each robot should act based only
on information local to it. It then becomes difficult,
however, to guarantee or even derive the behavior of
the entire system given the behaviors of the individual
components. In this paper we address this difficulty
in a novel way: We begin with a specification of an
assembly and develop methods that allow us to auto-
matically synthesize individual behaviors so that they
are guaranteed to produce the desired global behavior.

Specifically, we consider the task of assembling
many disk-shaped parts in the plane into copies of a
prescribed assembly (formation), which is specified by
a graph. As shown in Figure 1 we suppose that each
part can move itself and can play any role in an assem-

bly, which makes the task particularly rich. The con-
tribution of the paper is a means of synthesizing from
the specified assembly, a set of identical controllers
for the parts to run which have the net effect of mov-
ing the parts to form copies of the specified assembly
without colliding. The idea is that parts should join
together to into subassemblies which should in turn
join together to make larger assemblies and so on.
In Section 3, a theory is developed along with algo-
rithms which compile a specified assembly into a list
of allowable subassemblies. In Section 3.3, we show
how to produce a lookup table from the list which
can be used as a discrete event controller (Figure 2)
that guides parts through a “soup” of other parts and
subassemblies. In Section 4, we add a continuous mo-
tion controller based on the assembly rules represented
by the lookup table from Section 3.3. Various dead-
lock situations occur with the initial class of controllers
we synthesize. In Section 4.2 we describe a means of
avoiding this situation. Finally, we present our initial
investigation into the effects of various compile-time
choices on the performance of the resulting controllers.
Throughout we pay careful attention to the time and
space complexities of our algorithms — showing that
they are polynomial in the size of the specified assem-
bly.

1.1 Related Research

We are most strongly inspired by the work of
Whitesides and his group [2, 3] in meso-scale self-
assembly. In this work, small, regular plastic tiles with
hydrophobic or hydrophylic edges are placed on the
surface of some liquid and gently shaken. Tiles with
hydrophobic edges are attracted along those edges
while hydrophylic edges repel. Striking “crystals”
emerge as larger and larger structures self assemble.

murray
Submitted, 2002 IEEE Int'l Conference on Robotics and Automationhttp://www.cs.caltech.edu/~klavins/papers/klavins-icra2002.pdf

By using different shapes and edge types, different
gross structures can be created. A similar idea is used
on a much smaller scale in [13] where strands of DNA
are attached to tiny gold balls in solution. Comple-
mentary strands attract and a gross structure is re-
vealed. By choosing which strands go where, the “pro-
grammer” has some control over the resulting emer-
gent structure. At least two next steps are apparent.
First, these and similar [1] methods generally produce
arrays or lattices of parts, meaning that there is no
way to terminate a regular pattern at, say, a 5 × 5
array of parts (There has been work on changing the
function of parts as they combine [16]). Second, there
is no know formal method of starting with a specifi-
cation of the desired emergent structure and devising
the structure of the individual parts. In this paper we
address both of these issues by supposing that each
part can run a program that tells it when to join with
another part, and when to repel it, based on some
state information. Of course, this is a far way away
from the reality of small plastic parts or gold balls, but
our ideas could easily be implemented with teams of
robots and may even, when developed further, present
the chemist with new tools.

The motivation for considering disk shaped parts
in the plane and for the potential field construction
in Section 4 comes from the work of Koditschek and
others [11, 7] in assembly. There, a global artificial po-
tential function over the configuration space of n disk
shaped parts is used to guide the parts to their as-
sembled state, corresponding to the unique minimum
of the potential function. The approach is not dis-
tributed, however, because it requires that each part
know the full state of the system to act. Other work
has applied similar ideas, in a distributed fashion [14],
although without a means of assuring or even defining
the resulting behavior. Still other approaches to the
control of a group of robots [4] assume a leader. In
contrast, the present paper commits to a strong de-
gree of decentralization, using decentralized potential
fields merely as a primitive in a more sophisticated
hybrid control scheme.

The ideas in this paper also grow from our own work
in controller synthesis in manufacturing systems [9, 8].
Our approach to manufacturing has been to synthesize
a decentralized automated factory description from a
description of a product. The description includes the
layout of the factory and the control programs the
robots should run to produce the product. In that
sense, the present work is an extension of the idea,
although it assumes fewer constraints on the topology
of the workspace.

Figure 1: The goal of the assembly problem. Each
disk shaped part must move from its initial position
(a) to a position in an assembly (b). Dashed lines
show the resulting adjacency relationship E. There
may be leftover parts.

2 The Problem

We consider a simple form of assembly process by
assuming that parts are programmable and able to
sense the position and state of other nearby parts. We
start with m disk-shaped parts (of radius r) confined
to move in R

2. Denote the position of part i by the
vector xi. We desire that each part move smoothly,
without colliding with other parts, so that all n parts
eventually take some role in an assembly or formation.
This is shown graphically in Figure 1. For simplicity,
we assume that the dynamics of each disk are given
by ẍ = ui. We believe that control of parts with more
complicated dynamics can be based on the control al-
gorithms we develop for this simple situation. In this
section we describe the goal of assuming a role in a
formation formally.

Let G = (V, E) be a finite undirected, acyclic graph.
Thus, V is a finite set of nodes (in this paper, V =
{1, ..., n}) and E is a collection of edges of the form
{a, b} with a, b ∈ V and a �= b. In this paper, we
will call such a graph an assembly and only consider
the case where G is a tree (i.e., contains no cycles).
There are technical details, which are solvable but not
addressed in this paper except briefly, that prevent

the direct application of the methods in this paper to
general graphs.

Given an assembly G = (V, E) with |V | = n, con-
sider the case where m = n. The problem is to pro-
duce a control algorithm to be used by each part that
will control the m parts to move, without colliding,
from arbitrary initial conditions to positions such that
there exists a permutation h of {1, ..., m} such that

1. If {h(i), h(j)} ∈ E then knbr − ε < ||xi − xj || <
knbr + ε;

2. If {h(i), h(j)} �∈ E then ||xi − xj || > knbr.

Here knbr > 0 and ε > 0 are parameters. The im-
age h(i) of i is called the role of i in the assembly.
We furthermore require that these assemblies be sta-
ble to disturbances in the sense that the set of points
x1, ..., xm satisfying the above conditions is an attrac-
tor of the closed loop dynamics we will construct. If
m = kn for some k ∈ Z then we still require the above
except now with respect to a disjoint union of k copies
of G. And of course, if m is not a multiple of n, then
we require that as many parts as possible form assem-
blies in the obvious way.

A part j such that {h(i), h(j)} ∈ E is called a neigh-
bor of i. Suppose that i has ni neighbors each distance
knbr from it and equally spaced around it. Then it is
simple to show that the distance between the neigh-
bors is 2knbr cos((ni−2)π

2ni
). Thus, for the above con-

dition (2) to hold, ni ≤ 5. Thus, we assume that all
nodes in the assemblies we specify have degree less
than 6.

2.1 Controller Structure

In general we will assume that parts have limited
sensing and communication capabilities and we allow
them to store a discrete state, si, along with their
control programs. In particular, we assume that part
i can sense its own position and the positions and dis-
crete states of other parts within some range dmax > 0
of xi.

The methods we develop below will, given a de-
scription of the desired assembly structure, synthesize
a hybrid controller Hi of the form shown in Figure 2.
The goal is that when each part runs a copy of Hi

(from different initial conditions), the parts will self
assemble.

The controller Hi is described by a continuous con-
trol law Fi, a predicate A called the attraction pred-
icate and a discrete update rule g. Fi describes the
force that the part should apply to itself. A(si, sj) ∈
{true, false} determines whether parts i and j with

Figure 2: The structure of the hybrid controller that is
constructed by the compilation scheme in this paper.
Arcs denote transitions and are labeled by a predi-
cate/action pair. When an arc’s predicate becomes
true, the action is taken and control transfers from
the source of the arc to the target of the arc.

states si and sj should try to become neighbors,
thereby forming a larger assembly. The update rule
g(si, sj , sk) determines the new discrete state of part
k based on the joining of parts i and j. Loosely, the
operation of Hi is as follows. Part i starts with some
initial position xi(0), the initial state si(0) = (1, 1)
and no neighbors. It then applies the control force
Fi(x, ẋ, s) to itself until either a new neighbor is de-
tected or it receives a state update from a neighbor.
Here x, ẋ and s are m dimensional vectors describing
the complete state of the system. However, Fi may
only use the states of the parts within distance dmax

of part i. The force Fi is computed based on the po-
sition, velocity and discrete state of part i and on the
discrete states of the sensed parts.

The task of an automatic synthesis procedure, per-
formed by what we are calling a compiler, is to take a
description of a desired assembly and produce Hi —
in this case, Fi, A and g. The construction of A and g
are described in Section 3 and the construction of Fi,
which requires A, is discussed in Sections 4 and 4.1.

3 Compilation of Assembly Rules from
Specifications

In this paper, an assembly can be specified simply
by listing which roles in the assembly are adjacent —
that is, by a graph. As mentioned above, we restrict

ourselves to the situation where the adjacency graphs
are trees, leaving the detail of arbitrary graphs to fu-
ture work (see Section 5). In any case, we believe
that assembling an arbitrary graph will start with the
assembly of a spanning tree of that graph.

The goal of this section is to produce the attraction
predicate A and the update rule g from a specified as-
sembly Gspec = (Vspec, Espec), which we assume is a
tree. This requires first generating a set of subassem-
blies of Gspec (Section 3.2) and then compiling A and
g from the set (Section 3.3).

3.1 Discrete State of a Part

We intend that the parts control themselves to
first form subassemblies of Gspec, and from those sub-
assemblies form larger subassemblies and so on until
Gspec is finally formed. The discrete state of a part
must, therefore, include a reference to the subassem-
bly in which it currently plays a role. To this end,
we build a list (in Section 3.2) of the particular (con-
nected) subassemblies we will allow: G = {G1, ..., Gp}.
We require that each Gi ∈ G is of the form (Vi, Ei)
where Vi = {1, ..., |Vi|} and Ei ⊆ Vi × Vi. Although
this representation of subgraphs in G is arbitrary, be-
cause the vertices in Vi could have been named in other
ways, some common scheme is required for a graceful
definition of the states of parts.

Now, the discrete state of a part consists of a pair
si = (j, k) ∈ Z

2 where j is the index of a subassembly
in G and k ∈ Vi is a role in that subassembly.

3.2 Generating Assembly Sequences

Define an operation on assemblies G1 and G2 as
follows

Definition 3.1 The join of G1 and G2 via vertices
u ∈ V1 and v ∈ V2, denoted G1.u⊕G2.v, is defined as
G1.u⊕G2.v = (V, E) where

V = {1, ..., |V1|+ |V2|} and

E = E1∪{{a+|V1|, b+|V1|} | {a, b} ∈ E2}∪{u, v+|V1|}.
For example

({1, 2}, {{1, 2}}).2⊕ ({1, 2}, {{1, 2}}).1
= ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}).

We will also use the notations i.j⊕k.l and (i, j)⊕(k, l)
to mean the join of the assemblies with indices i and
k in a given G via the vertices with indices j and l.

The set of subassemblies G must have the following
property:

Algorithm A1:

Input: G = (V, E), a tree
u ∈ V , a node

Output: G, a list of subassemblies

S ← Neighbors(v)
Gnew = (Vnew , Enew)← ({1}, ∅)
G ← {Gnew}
While S �= ∅

v ← ElementOf(S)
Vnew ← Vnew ∪ {v}
Enew ← E|Vnew

G ← G ∪ {MakeStandard(Gnew)}
S ← (S − {v}) ∪ (Neighbors(v)−Vnew)

Figure 3: Psuedocode to generate a size-m set of sub-
assemblies of a given assembly of size m. In the code,
Neighbors(v) is the set of neighbors v with respect to
G and ElementOf(S) is a randomly chosen element of
the set S. The function MakeStandard takes an as-
sembly and renames the nodes so that they form the
set {1, ..., |Vnew|}.

Property 3.1 For all G ∈ G there exist G1, G2 ∈ G,
u ∈ V1 and v ∈ V2 such that G1.u ⊕G2.v 	 G unless
G = {{1}, ∅} and there does not exist a G′ ∈ G − {G}
with G 	 G′.

Here “	” means isomorphic in the usual sense:
(V1, E1) 	 (V2, E2) if there exists a function h : V1 →
V2 such that (u, v) ∈ E1 if and only if (h(u), h(v)) ∈
E2. Such an h is called a witness of the isomorphism.
Witnesses are used in this paper to “translate” the
representation of the join of two graphs to the rep-
resentation of that graph in G. Property 3.1 assures
that any assembly can be constructed from exactly two
other assemblies, so that only pairwise interactions be-
tween parts need be considered by the ultimate con-
troller, and that there is only one representation of
each subassembly in the list.

The simplest means of automatically constructing
G from Gspec is to simply set G to be all possible con-
nected subgraphs of G up to isomorphism, producing
a set of size O(2n). This set can be computed using
a simple exhaustive search. Since A and g will be
obtained from a table constructed from G (see Sec-
tion 3.3), this may be an impracticably large set for
large Gspec, although for small assemblies the set of all
subassemblies is quite reasonable and produces good
controllers. A G thus constructed trivially satisfies
Property 3.1.

Another means of constructing G is to build sub-
trees of Gspec one node at a time, starting at some
base node. A simple algorithm, A1, for doing this is
shown in Figure 3. It requires an assembly Gspec and
a base node i. It produces a set GA1,i of size exactly
n, there being one subassembly for each size 1 to n.
The set GA1,i constructed using A1 satisfies Property
3.1 easily since each subassembly (except the singleton
assembly) can be obtained by joining the next smallest
subassembly with {{1}, ∅}.1. Richer subassembly sets
can be made by calling A1 again, starting with a dif-
ferent base node, and combining it with the first set.
In this manner a set of size O(cn) can be constructed
from a set of c nodes U ⊆ Vspec. Call this set GA1,U .
It satisfies Property 3.1 because each of the sets GA1,i

for i ∈ U do. The process of combining the sets re-
quires some computation, however, because we must
maintain the second part of Property 3.1. To combine
the list GA1,i with list GA1,j we must compare each el-
ement of the first list with each element of the second
list to make sure they are not isomorphic. If they are,
we keep only one of them for the combined list. Al-
though there is no known polynomial time algorithm
for checking the isomorphism of two graphs, checking
the isomorphism of two trees of size n takes O(n3.5)
steps [15]. Thus, combining two size n lists takes time
O(n5.5). The reader can check that the combination
of sets satisfying Property 3.1 also satisfies Property
3.1.

3.3 Generating Update Rules

From an assembly set G satisfying Property 3.1, we
can state the definition of A simply:

Definition 3.2 Given G satisfying Property 3.1, the
attraction predicate A is defined as

A(si, sj) = true⇔ ∃ G ∈ G such that si ⊕ sj 	 G.

We can also define the update rule g.

Definition 3.3 Given G satisfying Property 3.1 and
states si and sj with A(si, sj) = true, the update
rule g is defined as follows. Suppose G 	 si ⊕ sj has
index k in G, suppose h : si ⊕ sj → G witnesses this
isomorphism and suppose sl = (a, b). Then

g(si, sj , sl)
.= (k, h(b′))

where b′ ∈ V (si ⊕ sj) is the name of vertex b after
taking disjoint unions in Definition 3.1 of the join op-
eration. If A(si, sj) = false then the update rule is not
defined: g(si, sj , sl)

.= ⊥.

The procedure for determining the values of A and
g require determining tree isomorphisms — which is
likely too time consuming to be done online. We can,
however, perform all the necessary computations of-
fline by compiling G into a table. The result is that
Hi can make all discrete transitions essentially instan-
taneously because all that is required is a table look-
up. Furthermore, the size of the table is O(|G|2n3).
As was shown, |G| can taken to be cn, so that even
complicated assemblies require only O(n5) storage.

The construction proceeds in two steps. First, we
determine a representation of the update function g
resulting from a join of Gi.j with Gk.l. Second we
build a table of all possible joins between all possible
pairs of distinct graphs taken from G − Gspec. The
result is a four dimensional table T where each entry
Ti,j,k,l is the representation of Gi.j ⊕Gk.l.

Given Gi.j and Gk.l, let G = (V, E) = Gi.j ⊕Gk.l.
We must first determine whether there exists a G′ ∈ G
such that G 	 G′ then, we require a witness h of this
isomorphism because we must have a means of trans-
lating the new roles of each part in the new assembly
into their representations in G. Suppose such an h
exists. Then we represent the table entry Ti,j,k,l as a
pair

(index(G′), 〈h(1), ..., h(|Vi|+ |Vj |)〉).

Otherwise, set Ti,j,k,l = ⊥. The procedure for
constructing T is shown in Figure 4, it takes time
O(|G|3n6.5) because of the added complexity of finding
a witness for each join.

To summarize, given Gspec, constructing A and g,
the discrete part of the controller Hi, proceeds in two
steps. First, a list of subassemblies G is build from
Gspec using one of the methods discussed in Section
3.2. Second, using algorithm A2, a table T is built
from the G. A(si, sj) can be computed simply by
checking whether Tsi,sj �= ⊥ and g(si, sj, (a, b)) can
be determined by looking up Tsi,sj and reading off
h(b).

4 Implementation of Assembly Rules

Completing the controller Hi shown in Figure 2 re-
quires a definition of Fi as well as some method by
which parts can communicate. In the example in Sec-
tion 4.1, we define an Fi and assume a simple commu-
nications scheme that works in simulation and about
which we have a preliminary analytical understanding
[10].

We suppose that parts can only communicate with
their neighbors. The difficulty is then that two parts

Algorithm A2:

Input: G, a list of subgraphs with
Property 3.1

Output: T, a tabular representation
of A and g

For i = 1 to |G| − 1
For k = i to |G| − 1

For j = 1 to |Vi|
For l = 1 to |Vk|

If ∃ G ∈ G with i.j ⊕ k.l 	 G

Let h be the witness
Ti,j,k,l = (index(G′), 〈h〉)

Else Ti,j,k,l = ⊥

Figure 4: The procedure for constructing a table of
size O(|G|2n3) from a list of subassemblies G of a spec-
ified tree Gspec. The predicate A and the update rule
g can be read off the resulting table in constant time.

playing roles in the same subassembly might try to
update the state of that subassembly simultaneously.
Thus, such an update requires a means of obtaining
consensus among all parts in the subassembly. Con-
sensus can be difficult or even impossible if the pro-
cessing is asynchronous and there are process or link
failures [12], although approximate algorithms exist
for these situations [6]. In what follows, we assume
a good consensus algorithm no process of communica-
tion failures. Consideration of the many complications
we may add, although important, would take us too
far afield of the present topic and are somewhat inde-
pendent of methods we have so far described.

4.1 An Example Implementation

For each part i, we can decide, using A, whether
part i should move toward j or not. To this end define

S(i) = {j | ||xi − xj || < dmax}
Attract(i) = ({j | A(si, sj)} ∪Nbrs(i)) ∩ S(i)

Repel(i) = ({j | ¬A(si, sj)} −Nbrs(i)) ∩ S(i).

S(i) is the set of parts that i can sense. Note that these
sets are easily computed from a table compiled from
a given Gspec. One way of forming the control law Fi

is to sum, for each j ∈ Attract(i) a vector field Fatt

which has an equilibrium set at distance knbr from xj

and for each j ∈ Repel(i) a vector field Frep which has
xj as a repellor. We can construct these fields from

the potential functions defined by

Vatt(xi, xj) =
(||xi − xj || − knbr

||xi − xj || − r

)2

Vrep(xi, xj) =
(

1
||xi − xj || − r

)2

.

Recall that r is the radius of the (disk shaped) parts.
Then we set

Fatt(xi, xj) = − 1
||xi − xj ||

∂Vatt

∂xi
(xi, xj)

Frep1(xi, xj) = − 1
||xi − xj ||

∂Vrep

∂xi
(xi, xj)

Frep2(xi, xj) =
{

0 if ||xi − xj || > knbr + δ
Frep1(xi, xj) otherwise

where δ > 0 is some small constant. We have scaled
the gradients of the potential functions by ||xi−xj ||−1

so that the “influences” of parts nearest i are felt most
strongly. We have also defined two versions of the
repelling field. We use Frep2 because it is only active
when parts violate condition (2) from Section 2. We
will see the reason for this shortly.

For the complete control law we use

Fi(x, ẋ, s) =
∑

j∈Attract(i)

Fatt(xi, xj)

+
∑

j∈Repel(i)

Frep2(xi, xj)− bẋi

where b > 0 is a damping parameter. In prac-
tice we assume a maximum actuator force, setting
ui = max{umax, Fi(x, ẋ, s)}. It can be shown that
the following holds:

Proposition 4.1 Suppose Gspec has maximum degree
5, n = |Vspec|, and the neighbors relation Nbrs induces
a graph isomorphic to Gspec. Then all points in the
set

B = {(x, ẋ) | (j ∈ Nbrs(i)→ ||xi − xj || = knbr)
∧ (j �∈ Nbrs(i)→ ||xi − xj || > knbr + δ)}

are equilibrium points of F = (F1, ..., Fn).

In [10] we present an initial investigation of the local
stability of B with respect to F = (F1, ..., Fn). The
reason for using Frep2 instead of Frep1 is now evident:
The repelling component of Fi is zero in B allowing
us to ignore the repelling part of Fi when determining
the equilibriums of F .

Simulations of the above system, from a vari-
ety of initial conditions, with varying numbers of
agents (from tens to hundreds), and various specifi-
cations of the desired assembly Gspec can be viewed
at http://www.cs.caltech.edu/∼klavins/rda/.

4.2 Deadlock Avoidance

Even if B (in Proposition 4.1) is locally stable, it is
certainly not globally stable with respect to the hybrid
controller Hi. Two deadlock situations arose in our
initial simulations. First, F may have spurious stable
equilibriums which prevent attracting pairs from mov-
ing toward each other. Second, it is possible that the
set of currently formed subassemblies admit no joins
in G. That is, it may be that at some time there do
not exist parts i and j such that A(si, sj) is true.

To avoid these situations, we employ a simple dead-
lock avoidance method. For each subassembly Gk ∈ G
we define a stale time stale(k) ∈ R. Any subassem-
bly that has not changed state within stale(i) seconds
of its formation time should (1) break apart, setting
the state of each part in it to (1, 1) and (2) have each
part “ignore” other parts from that same assembly for
stale(k) seconds. If kspec is the index of Gspec in G,
we set stale(kspec) = ∞. The result is a new con-
troller Hd,i that checks for staleness and implements
(1) and (2) above, but is otherwise similar to Hi in
Figure 2. We also change the definitions of Attract(i)
and Repel(i). Suppose that Ignore(i) is the set of all
part indices that part i is presently ignoring due to a
staleness break-up. Then

Attractd(i) = Attract(i) − Ignore(i)
Repeld(i) = Repel(i)− Ignore(i).

Fi is then changed accordingly. Using this deadlock
avoidance measure, we have not yet seen a set of initial
conditions for any Gspec we tried for which our simu-
lation did not converge upon a maximum number of
parts playing roles in a final assembly.

4.3 Comparing the Performance of Vari-
ous Compilation Options

The rate of assembly of a specified tree Gspec de-
pends on the number of join interactions possible at
any given time. By increasing the size of G — that
is, the number of subassemblies possible — we can in-
crease the number of opportunities that a given part
has to join with other parts. Figure 5 shows the af-
fect of the size of G on the rate of assembly. Starting
with a specification Gspec of a ten part assembly, we
generated two subassembly lists: Gall and GA1,1. The
first contained all possible subassemblies (17 of them)
while the second, obtained using algorithm A1 con-
tained 10 subassemblies. We compiled each list into a
controller with deadlock avoidance then ran 50 simu-
lations of each controller from randomly chosen initial

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percent
Complete

20

30

40

50

60

70

Average
TimeHsL

All Subassemblies Allowed

n Subassemblies Allowed

Figure 5: Comparison of assembly times for Gall and
GA1,1. See Section 4.3.

conditions using 110 parts. The time in seconds until
110p parts found roles in a copy of the final assem-
bly was recorded for p ∈ {0.1, 0.25, 0.4, 0.55, 0.7}. The
figure shows the time until p% of the parts were as-
sembled versus p averaged over the 50 runs. Error bars
denote standard deviation. The solid line shows the
controller with Gall and the dashed line shows the con-
troller with GA1,1. Apparently, the increased number
of interactions possible afforded by just seven extra
subassemblies results in an increase in the “reaction
rate” of the system. Thus, the price of using algo-
rithm A1 is apparent. We expect that the cost of
using a linear or quadratic size list of subassemblies
instead of the full exponential sized list will increase
dramatically as the size of Gspec increases, although
we do not yet have an analytical means of proving so.

5 Conclusion

The ideas in this paper represent only the first steps
toward understanding and realizing specifiable, pro-
grammable self assembly. Many relatively unexplored
and apparently fruitful issues remain. First, although
simulations suggest that the implementation (partic-
ular choice of Fi) given in Section 4.1 combined with
the deadlock avoidance procedure in Section 4.2 pro-
duces controllers that assemble a maximum number of
parts safely (without collisions), this must be verified
analytically: A substantial problem requiring possibly
new tools in hybrid systems analysis. We also hope to
develop a formal understanding of the dependence of
the rate at which parts assemble on the various com-

pile time options presented in Section 3. Many varia-
tions on the theme presented here should be explored:
hierarchical assembly with intermediate goal assem-
blies, three dimensional assembly, assembly of non-
homogeneous parts, assembly of parts with complex
dynamics (e.g. nonholonomic), and so on. Finally, we
are exploring hardware implementations of these algo-
rithms so that the issues of asynchronous processing,
inaccurate sensors and faulty communications may be
addressed.

Acknowledgements

Thank you to Dan Koditschek with whom I
have discussed many of the ideas. The re-
search is supported in part by DARPA grant num-
bers JCD.61404-1-AFOSR.614040 and RMM.COOP-
1-UCLA.AFOSRMURI.

References

[1] E. Bonabeau, S. Guerin, D. Snyers, P. Kuntz, and
G. Theraulaz. Three-dimensional architectures grown
by simple ’stigmergic’ agents. BioSystems, 56:13–32,
2000.

[2] N. Bowden, L. S. Choi, B. A. Grzybowski, and G. M.
Whitesides. Mesoscale self-assembly of hexagonal
pates using lateral capillary forces: Synthesis using
the ”capilary” bond. Journal of the American Chem-
ical Society, 121:5373–5391, 1999.

[3] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, and
G. M. Whitesides. Design and self-assembly of open,
regular, 3D mesostructures. Science, 284:948–951,
1999.

[4] J. P. Desai, V. Kumar, and J. P. Ostrowski. Control
of changes in formation for a team of mobile robots.
In IEEE International Conference on Robotics and
Automation, Detroit, May 1999.

[5] J. A. Fax and R. M. Murray. Graph laplacians and ve-
hicle formation stabilization. Technical Report CDS
01-007, California Institute of Technology, 2001. Sub-
mitted to IFAC 2002.

[6] M. Franceschetti and J. Bruck. A group membership
algorithm with a practical specification. To appear in
IEEE Transactions on Parallel and Distributed Sys-
tems.

[7] S. Karagoz, H. I. Bozma, and D. E. Koditschek. Event
driven parts moving in 2d endogenous environments.
In Proceedings of the IEEE Conference on Robotics
and Automation, pages 1076–1081, San Francisco,
CA, 2000.

[8] E. Klavins. Automatic compilation of concurrent hy-
brid factories from product assembly specifications.

In Hybrid Systems: Computation and Control Work-
shop, Third International Workshop, Pittsburgh, PA,
2000.

[9] E. Klavins and D.E. Koditschek. A formalism for
the composition of concurrent robot behaviors. In
Proceedings of the IEEE Conference on Robotics and
Automation, 2000.

[10] Eric Klavins. Toward a proof of stability
for a distributed assembly system. http://
www.cs.caltech.edu/∼klavins/papers/tr-rda.pdf, un-
published.

[11] D. E. Koditschek, , and H. I. Bozma. Robot assembly
as a noncooperative game of its pieces. Robotica, 2000.
to appear.

[12] N. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[13] C. A. Mirkin. Programming the assembly of two-
and three-dimensional architectures with dna and
nanoscale inorganic building blocks”. Inorganic
Chemistry, 39(11):2258–2272, 2000.

[14] H. Reif and H. Wang. Social potential fields: A dis-
tributed behavioral control for autonomous robots.
In Proceedings of the 1994 Workshop on the Algo-
rithmic Foundations of Robotics. A.K.Peters, Boston,
MA, 1995.

[15] S. W. Reyner. An analysis of a good algorithm for
the subtree problem. SIAM Journal on Computing,
6:730–732, Dec 1977.

[16] K. Saitou. Conformational switching in self-
assembling mechanical systems. IEEE Transactions
on Robotics and Automation, 15(3):510–520, 1999.

