
ACC02-AIAA1068

Applied Receding Horizon Control

of the

Caltech Ducted Fan∗

Ryan Franz† Mark Milam‡ John Hauser†

{franzr,milam,hauser}@cds.caltech.edu

Abstract

This paper details the application of a constrained receding horizon
control strategy to the Caltech Ducted Fan, an indoor vectored-thrust
flight experiment. The strategy is used to stabilize the experiment about
one operating point, and improved disturbance rejection and region of
attraction are shown compared with a scheduled LQR controller. Issues
related to non-zero computation times, choice of horizon length and ter-
minal cost are discussed. Keywords: real-time optimization, model pre-
dictive control, optimal control, nonlinear control, guidance.

1 Introduction

In receding horizon control, an open-loop trajectory is found by solving a finite-
horizon optimal control problem. The controls of this trajectory are then applied
for a certain fraction of the horizon length, after which the process is repeated.
See [5] for a good review of recent work in this field. This approach has been
used in the process control industry successfully for some time, where dynam-
ics are relatively slow, but the computing power required and the tendency for
naive implementations to unstabilize a system have prevented its use on fast,
stability critical nonlinear systems. Recently, however, theoretical results re-
garding stability properties of receding horizon controllers and ever increasing
computing power have revived interest in the scheme.

The application of Receding Horizon Control to aerial vehicles has been pro-
posed and analyzed by several researchers; [10], for example, provide simulation
results for stabilization of a helicopter UAV about an open loop trajectory using
receding horizon control. The strategy offers many benefits in this environment,
such as the inherent ability to deal with constraints in the state and control.
Examples of such constraints commonly encountered include static terrain ob-
stacles, dynamic or pop-up threats and saturations on the actuators. Much of
the existing work, however, has not addressed the fact that computation times
cannot be ignored with the fast dynamics of most aerial platforms.

∗Research supported in part by DARPA
†Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425
‡Control and Dynamical Systems, Mail Code 107-81, California Institute of Technology,

Pasadena, CA 91125

1



The goal of the work in this paper was twofold: first, to address issues of
implementation with substantial computation times, and second, to provide a
validation of theoretical results through implementation on an actual nonlin-
ear experiment. The optimal control problem is solved using NTG, a software
package developed at Caltech [8]; a full aerodynamic model of the flying wing
is used in order to demonstrate feasibility on a true UAV platform. A gain-
scheduled LQR controller is used for comparison because of its good overall
performance. This paper deals exclusively with stability, region of attraction
and disturbance rejection properties; use of receding horizon in a maneuvering
sense will be examined in a future paper.

The progression of the paper is as follows: section 2 provides theoretical
background as well as some motivation for the choices made in terms of timing;
section 3 describes in detail the two different timing methods used in the ex-
periment; section 4 describes the actual experiment, and finally sections 6 and
7 show simulation and actual results before concluding.

2 Theoretical Background

This section presents a summary of relevant theory, and attempts to motivate
our choices for timing made in the sequel. We hope to provide more concrete
mathematical foundations for these timing formulations in a future paper.

We begin by defining a system with an ideal feedback law, looking at it in a
sampled data sense and then proposing four different methods of applying the
feedback. Next we consider the effects of weakening the idealness of the system,
where one method becomes the standard theoretical receding horizon formula-
tion, one method becomes a naive implementation with non-zero runtimes, and
the remaining two become candidates for actual implementation. We conjecture
that the implementable methods will be stable for short enough runtimes and
long enough horizons.

Our system is described by

ẏ = f(y, u) + g(y, u, w) (1)

where f(·, ·) is the nominal (i.e., model) system vector field and g(·, ·, ·) describes
the effect of the external disturbance w together with that portion of the system
dynamics that is not explicitly modeled. Thus, for the purpose of control design,
etc., we will use

ẋ = f(x, u) (2)

as the model system.
Now, suppose that

u = k(x) (3)

is a state feedback that exponentially stabilizes the origin for the nominal sys-
tem (2) and that V (x) is a quadratic Lyapunov function proving such. For
example, k(·) might arise as the solution to an infinite horizon optimization
problem with V (·) as the corresponding minimum cost (to go). In the case that

2



the perturbation is nonzero but can be bounded by a constant, one may use
Lyapunov arguments to show that the state of the true closed loop system (1),
(3) will converge to a neighborhood of the origin.

Next we construct a sampled data feedback structure such that at every time
tk := kδ we obtain a measurement yk := y(tk). At every time step, we calculate
a trajectory x(·; yk), u(·; yk) by simulating the closed loop model system (2), (3)
for a length of time (either δ or 2δ seconds).

We propose the following four methods for applying the resulting open loop
input trajectory to the actual system (1):

1. apply u[0,δ](yk) (the control trajectory over the interval tsim ∈ [0, δ] re-
sulting from a simulation starting at yk) over the interval t ∈ [tk, tk+1].
Note that this option requires that the simulation be run in zero time.

2. apply u[0,δ](yk) over the interval t ∈ [tk+1, tk+2]. Note that this option
will always involve a delay.

3. apply u[δ,2δ](yk) over the interval t ∈ [tk+1, tk+2].

4. apply u[0,δ](x(δ; yk)) over the interval t ∈ [tk+1, tk+2]. Here x(δ; yk) rep-
resents the state of the system x starting at yk simulated ahead δ s.

When the system perturbation is identically zero g(x, u, w) ≡ 0, we see that
options 1, 3, and 4 will be identical. Options 2, 3, and 4 are all implementable if
the simulation computation can be completed in less than δ seconds (i.e., faster
than real time). Because option 2 involves a delay (even in the no perturba-
tion case), we propose that 3 and 4 will be the best methods with non-zero
runtimes. Clearly the performance of the sampled data system schemes with
nonzero perturbation will depend on the sample time δ.

As a next step, suppose that we compute the input trajectory u(·; yk) by
solving the finite horizon optimal control problem

J∗
T (y(tk)) = min

u(·)

∫ T

0

q(x(τ), u(τ)) dτ+V (x(T )), ẋ(t) = f(x(t), u(t)), x(0) = y(tk)

where the incremental cost satisfies q(x, u) ≥ cq(‖x‖2 + ‖u‖2) with cq > 0.
If the terminal cost V (·) is chosen to be a control Lyapunov function (CLF)
satisfying minu((̇V ) + q)(x, u) ≤ 0 on a neighborhood of the origin, option 1
(with g(x, u, w) ≡ 0) is the receding horizon control scheme RH(T, δ), analyzed
in [3]. Now allowing g(x, u, w) to be nonzero, we discuss some stability properties
of this structure.

As in the stability analysis of unperturbed receding horizon control [3], we
will use J∗

T (·) as a Lyapunov function. Roughly speaking, we require that J∗
T (yk)

be a strictly decreasing sequence, ensuring the convergence of the state to a
(hopefully small) neighborhood of the origin.

Note that J∗
T (·) is Lipschitz continuous with constant K over the compact

region of interest. The properties of q(·, ·) and V (·) ensure that

J∗
T (x(tk + δ)) ≤ J∗

T (x(tk))−Qδ(x(tk)) (4)

3



where the decrement Qδ(·) is a positive definite function (given by integrating
the optimal incremental cost over a δ second interval).

Suppose, now, that we apply the same open loop control u(·) (e.g., the just
computed optimal u(·)) to the real and model systems, (1) and (2), with poten-
tially different initial conditions. By a standard argument (using the Bellman-
Gronwall lemma, see [4]), we have

‖y(tk + δ)− x(tk + δ)‖ ≤ eLδ‖y(tk)− x(tk)‖+ b

L

(
eLδ − 1

)
(5)

where b is a bound on ‖g(y(t), u(t), w(t))‖, t ∈ [tk, tk + δ], and L is a Lipschitz
constant for f(·, ·). In our current case (option 1), the initial conditions are
equal, y(tk) = x(tk), so the above equation reduces to

‖y(tk + δ)− x(tk + δ)‖ ≤ bδ + h.o.t. (6)

Combining (4) and (5) and noting that y(tk) = x(tk), we obtain

J∗
T (y(tk + δ)) ≤ J∗

T (x(tk + δ)) +K‖y(tk + δ)− x(tk + δ)‖ (7)

≤ J∗
T (y(tk))−Qδ(y(tk)) +K

b

L
(eLδ − 1) . (8)

For small δ > 0, we can bound the terms on the right according to Qδ(x) ≥
δ
2cy‖x‖2 and K b

L (e
Lδ − 1) ≤ 2Kbδ. We conclude that, for small δ, J∗

T (y(t)) will
decrease provided that

‖y(t)‖2 ≥ 4Kb

cq
. (9)

This determines the radius rb for an invariant sublevel set of J∗
T (·) to which

the state of the true system will converge to under the scheme of option 1. A
picture of this is shown in fig. 1.

Finally, we extend this discussion to include situations in which y(tk) =
x(tk), which is the case in options 2, 3, and 4. In this case (5) necessarily contains
an exponential (in δ) term multiplied by the error in the initial conditions.
Performing analysis similar to that detailed above, we obtain the relation

J∗
T (y(tk + δ)) ≤ J∗

T (x(tk + δ))−Qδ(y(tk)) +K b
L (e

Lδ − 1)
+ (K(1 + eLδ) +KQ)‖y(tk)− x(tk)‖ (10)

where KQ is a Lipschitz constant for Qδ(·). Clearly, mismatches in the initial
conditions lead to performance degredations, including an enlargement of the
terminal set (rb increased) as well as potential destabilization. It is therefore
of prime importance to minimize the initial condition mismatch to the extent
possible. We conjecture that option 2 does not do a good job of this; indeed,
even in the no perturbation case such an error is induced by delay. Accordingly,
we study options 3 and 4 both in simulation and experimentally on the physical
system, and attempt to determine a range of parameters horizon T and period
δ providing a desired level of performance.

4



Figure 1: Illstration of sublevel set of J∗
T (·) to which the state of the true system

will converge

A final note is meant to justify the use of a “fast as possible” timing scheme,
whereby δ is taken as the last computation time and thus is not constant. The
reference [3] provides as a result the stability of RH(T, {δk}), where 0 ≤ δk ≤ T

and liml→∞
∑l

k=0 δk = ∞.

3 Timing and Optimization Formulation

In some applications of receding horizon, runtimes are insignificant compared to
the dynamics of the system. This is not the case on most aerial platforms with
current computing power. On our hardware we were able to achieve runtimes
between 0.1s and 0.2s in most cases; we ordinarily run linear controllers at a
minimum of 50Hz. Because of this, the preceding discussion is crucial. Before
detailing our timing implementations, we first state explicitly the optimization
formulation used in this paper:

min
x(·),u(·)

∫ T

0

xT
err(τ)Qxerr(τ) + uT

err(τ)Ruerr(τ) dτ + xT (T )Px(T ) (11)

subject to

x(0) = x0, u(0) ≤ c

with xerr(t) = x(t) − xref (t) and uerr(t) = u(t) − uref (t), xref (t) and uref

constant.
We choose Q and R to be the same as weights used in the past to generate

LQR gains with good performance, and P to be the corresponding solution to

5



Figure 2: Illustration of timing scheme without prediction

the algebraic Riccati equation resulting in a CLF terminal cost around a certain
operating point. The choice of x(0) above is dictated by the choice of timing
scheme. We use two different strategies, corresponding to options 3 and 4 above,
for choosing these initial constraints. Sections 3.1 and 3.2 describe these further.
In addition to these constraints, we can also choose initial constraints on the
accelerations and the controls; this is described in section 3.3. Another issue in
timing involves how we deal with trajectory computations which fail for some
reason; section 3.4 details our solution to this.

3.1 Option 3: No Prediction

The first scheme for choosing the initial constraints in the state is the simplest,
as it involves no model prediction. Whenever a computation is triggered, the
current state of the system is given as the initial constraint on the state tra-
jectory for the optimization problem. By the time the computation is finished
tsample s later, however, the idea is that the system has changed significantly.
To attempt to use a valid control, we simply discard the first tsample s of the
trajectory, hoping that the resulting start point will coincide roughly with where
we were in the previous trajectory. Fig. 2 shows graphically how this process
works on one of the states. In this case, the controls corresponding to the line
labelled “Receding Horizon Reference Trajectory” are applied to the system.
Some of our results apply these controls open-loop, while at other times we ap-
ply Vm open-loop while applying a PD feedback rule with θ and θ̇ to compute
the δp used. Note that the figure exaggerates certain things for illustration–for
example, the horizon length thorizon is in reality much longer than tsample. As
with any timing scheme, there are necessarily discontinuities in the resulting
control, although a short enough period and an accurate model will minimize

6



Figure 3: Illustration of timing scheme with prediction

the jumps.
In our implementation, tsample can either be set to some constant, or the

computations can be run as “fast as possible”, meaning a new computation is
triggered immediately after the last one has finished. In this case, tsample varies
with the runtime.

3.2 Option 4: With Prediction

The second scheme we examine attempts to minimize discontinuities by using
prediction. When a computation is triggered, the current state of the fan is first
used as the initial condition for a simulation in which the control trajectory
of the previous computation is used as input. This simulation is run for some
amount of time tsim; if a fixed period is being used, tsim is simply equal to the
tsample, but if a “fast as possible” rule is used, tsim is taken as an average of the
past n runtimes. After the simulation is completed, the final values are passed
as the initial constraints to the optimization. The resulting trajectory is output
from the beginning. Fig. 3 shows this process graphically. Again, the controls
corresponding to the line labelled “Receding Horizon Reference Trajectory” are
applied to the system, and can be used either open-loop or with feedback around
θ and θ̇.

3.3 Initial Constraints on State Derivatives and Forces

A characteristic of the spline representation used to solve the optimal control
problem is that, between enforcement points, the values of the states, their
derivatives and the controls may not be consistent with the equations of motion

7



for the system. Because of this, a point on the trajectory is in general not suit-
able as an initial equality constraint for a successive computation. Nevertheless,
experience showed us that some sort of effort in minimizing large jumps in at
least the forces is worthwhile. To deal with this, we introduce a degree of free-
dom on the accelerations by eliminating their initial constraints. We are most
interested in minimizing jumps in the controls, so we enforce an inequality con-
straint |uk+1(0)− uk(tsample)| < a for some a. If a fixed period is used, tsample

is simply equal to the period, but if a “fast as possible” rule is used, tsample is
taken as an average of the past n runtimes. This approach is compatible with
both timing schemes discussed above; graphically, control trajectories always
start near the previous trajectory.

3.4 Non-Convergent Trajectory Computations

Unfortunately, not all trajectory computations are guaranteed to converge. Each
computation is given the last computed trajectory as an initial guess, which is
sometimes not good enough; also, some combinations of initial constraints and
cost function are simply degenerate. If a computation returns certain signs of
failure, the last good trajectory is simply continued and another computation
is triggered. This will certainly fail if a valid trajectory is not computed before
the

4 Experimental Setup

The right diagram in fig. 4 shows an overview of the Caltech ducted fan. The
experiment consists of a vertical stand and a horizontal boom which holds the
actual wing. This setup enables flight on a cylinder of height 2.5 m and ra-
dius 2.35 m. Because of a mass of 12.5 kg and a maximum thrust of only
15 N , a counterweight is attached to the boom via a cable and pulleys which
reduces the effective gravity to achieve mgeff = 7 N . This allows the system
to attain sizable vertical accelerations, while minimizing the force of potential
crashes. Mechanical brakes in the vertical direction are used as well to aid in
crash landings. Actuation of the ducted fan is accomplished in two ways: by
controlling the speed of the propellor mounted inside the cowl, and by vectoring
the resulting thrust via a servo controlled bucket.

The left diagram in fig. 4 shows more explicitly the inertial coordinate frame
used in this paper. In this frame, the axes are fixed to the ground, and the x and
z directions represent horizontal and vertical inertial translations. θ represents
the rotation of the ducted fan about the boom axis. All three of these variables
are measured via rotary encoders, and the resulting signals are routed to the
computing platform via sliprings.

The equations of motion are given by

8



Figure 4: Ducted Fan Schematic Diagram

mẍ+ FXa
− FXb

cos θ − FZb
sin θ = 0

mz̈ −mgeff + FZa
+ FXb

sin θ − FZb
cos θ = 0

Jθ̈ −Ma + 1
rs
IpΩẋ cos θ − FZb

rf = 0
(12)

where

FXa
= D cos γ + L sin γ, FZa

= −D sin γ + L cos γ

are the aerodynamic forces. See [7] for a complete derivation of these equations.
We chose a spatial represention of the equations of motion in order that we can
consider both hover and forward flight modes. FXb

and FZb
are thrust vectoring

body forces; Ip = 2e−5 kg mm2 and Ω = 1300 rad/s are the moment of inertia
and angular velocity of the ducted fan propeller, respectively. J = .25 kg m2

is the moment of inertia of the ducted fan about the boom, and rf = .35 m is
the distance from center of mass along the Xb axis to the effective application
point of the thrust vectoring force. The angle of attack α is related to the pitch
angle θ and the flight path angle γ by

α = θ − γ.

The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

9



L = qSCL(α),D = qSCD(α), and M = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV

2. The norm of the
spatial velocity is denoted by V and ρ is the atmospheric density. Figure (5)
depicts the coefficients of lift (CL(α)) and drag (CD(α)) and the moment coeffi-
cient (CM (α)). These coefficients were determined from a combination of wind
tunnel and flight testing.

−2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

alpha (rad)

Lift Coefficient

−2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

4

alpha (rad)

Drag Coefficient

−2 0 2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

alpha (rad)

Moment Coefficient

Figure 5: B-spline curve fits to wind tunnel and flight test results for the
CL(α),CD(α), and CM (α) aerodynamic coefficients

5 Trajectory Generation Methodology

There are three components to the trajectory generation methodology we pro-
pose. The first is to determine a parameterization (output) such that Equation
(12) can be mapped to a lower dimensional space (output space). [1] gives infor-
mation on finding this mapping if the system if flat. The idea is to map dynamic
constraints to algebraic ones. Once this is done the cost and constraints can also
be mapped to the output space. The second is to parameterize each component
of the output in terms of an appropriate B-spline polynomial. Finally, sequen-
tial quadratic programming is used to solve for the coefficients of the B-splines
that minimize the cost subject to the constraints in output space. See [6, 9] for
more details on this approach. The NTG software package is an implementation
of this concept. The user provides the cost and the constraints in terms of the
outputs and their derivatives as well as the Jacobian of the cost and constraints
with respect to each output and the maximum derivative that occurs in each
output.

By using this methodology, we can sufficiently reduce the dimension of the
nonlinear programming problem to make real-time computation possible. For
our system we will choose as outputs z1 = x(t), z2 = z(t), z3 = θ(t) in solving

10



0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6

7

8

Time (s)

X
 P

os
iti

on
 (

m
)

x position

Figure 6: Simulation results in x to a 6 m step

the problem posed in eq. 11. Given these outputs, their derivatives and the
control trajectory can be computed easily.

6 Simulation Study

Because of the complex implementation involved in this experiment, a simula-
tion was built in tandem with the real implementation which was functionally
equivalent except for the use of a model instead of the real system. The simula-
tion allows us to explore many different configurations without fear of damaging
the hardware. Table 1 shows results of identifying the highest acceptable periods
for different combinations of timing mode, horizon length and theta controller.
The test used for these results was a 20 m step in x, a fairly demanding request
which puts the fan into a forward flight state to test out the full features of the
model. Acceptable results were chosen as stable and with few qualitative dif-
ference from the best results. The theta controller is simply a PD loop around
computed theta trajectories which proved necessary in some configurations of
the experiment because of theta’s fast dynamics.

An interesting feature of these results is that the theta controller significantly
improves the performance of the non-prediction timing scheme, while it has a
negative effect on the prediction timing system. We attribute this to the fact
that the prediction mode relies on knowing the exact inputs to the model as
given by the last computation, while the theta controller changes those inputs.

In this range of horizon values, runtimes are consistently between 0.05 s
and 0.35 s. Accordingly, we anticipated a much greater chance of success with
greater horizon lengths.

Fig. 6 shows the response in x of the simulated system to a 6 m step using
no θ controller, no prediction, 1 s horizon and δ = 0.2 s.

11



predict no predict
horizon w/o θ w/ θ w/o θ w/ θ
1.0s 0.4s 0.1s 0.15s 0.2s
1.5s 0.5s 0.1s 0.2s 0.4s
2.0s 0.65s 0.2s 0.3s 0.7s
2.5s 0.6s 0.45s 0.4s 0.6s

Table 1: Maximum acceptable periods as determined in simulation

7 Results

90 100 110 120 130 140 150 160
−6

−4

−2

0

2

4

6

Time (s)

X
 P

os
iti

on
 (

m
)

x position

Figure 7: x response to a series of disturbances; T = 1 s, no prediction

First we show disturbance rejection and region of attraction properties. Fig.
7 and 8 show x and z responses when the fan is given a serious of rather violent
shoves. The receding horizon trajectories can be seen branching off of the curve,
especially during periods of high accelerations. The constant reference value is
shown as the horizontal line in both plots. The setup used is as follows: a
horizon of 1.0 s, no prediction timing mode, “fast as possible” period δ and the
θ controller is turned on. Periods between disturbances are most easily seen in
the z plot as times when the fan stays fairly constant at zero. The corresponding
portions of the x data show that the system can tolerate offstes in x which is to

12



90 100 110 120 130 140 150 160
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Z
 P

os
iti

on
 (

m
)

z position

Figure 8: z response to a series of disturbances; T = 1 s, no prediction, w/ θ
controller

be expected given the weights Q and R which we chose. From these results we
see that the system can recover from fairly strong disturbances, also indicating
a large region of attraction. Results of the same tests using a gain scheduled
LQR controller are not even worth showing, as the controller could not recover
and the system crashed.

Next we show the response to a 6 m step in x, analagous to the simulation
shown in fig. 6. Figs. 9 and 10 show the x response using the receding horizon
controller and the gain scheduled LQR controller, respectively. The receding
horizon controller uses the same parameters as in the above disturbance rejection
setup. The response using the gain scheduled LQR controller is similar, but we
add that the fan lost more altitude with the LQR controller.

In terms of studying interactions between timing scheme, horizon length and
sample period δ, we are currently perfecting the implementation to allow for a
detailed investigation. Future revisions of this paper will include results of this
investigation.

8 Conclusion

The theoretical discussion in section 2 provides a good framework for evaluating
in a qualitative sense different choices for choosing a timing scheme to deal with
non-zero runtimes. In particular, two timing paradigms are chosen which seem

13



68 70 72 74 76 78 80 82 84 86 88

−1

0

1

2

3

4

5

Time (s)

X
 P

os
iti

on
 (

m
)

x position

Figure 9: x response to a 6 m step input; T = 1 s, no prediction, w/ θ controller

reasonable. Simulation is used to compare and contrast different combinations
of timing mode, horizon length and sample period δ. Implementation on the
real system, while preliminary, is very encouraging and shows improved distur-
bance rejection, region of attraction and step response in comparison to a gain
scheduled LQR controller. We believe this is a good validation of the theory
involved.

Future work will include a comprehensive study of performance using differ-
ent timing modes, horizons and sample periods. In addition, we seek stronger
mathematical results which could indicate theoretically which timing mode is
better. Another intriguing possibility is to extend the prediction timing mode
by feeding the optimization routine constant updates of what the best predicted
state is. The predicted state would increase in accuracy while not changing the
resulting optimization solution greatly.

References

[1] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A Lie-Bäcklund approach
to equivalence and flatness of nonlinear systems. IEEE Trans. Auto. Cont.,
44(5):928–937, 1999.

14



0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6

7
x position

Figure 10: x response to a 6 m step input; T = 1 s, no prediction, w/ θ
controller

[2] Ali Jadbabaie and John Hauser. On the stability of unconstrained receding
horizon control with a general terminal cost. In Submitted, Systems and
Control Letters, 2001.

[3] Ali Jadbabaie, Jie Yu, and John Hauser. Unconstrained receding-horizon
control of nonlinear systems. IEEE Transactions on Automatic Control,
46:776–783, 2001.

[4] Hassan Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ,
1996.

[5] D.Q. Mayne, J. B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36:789–814,
2000.

[6] M. B. Milam, K. Mushambi, and R. M. Murray. A new computational
approach to real-time trajectory generation for constrained mechanical sys-
tems. In IEEE Conference on Decision and Control, 2000.

[7] Mark Milam and R.M. Murray. A testbed for nonlinear flight control tech-
niques: The caltech ducted fan. In Conference on Control Applications,
1999.

15



[8] M.B. Milam, K. Mushambi, and R. M. Murray. A new computational ap-
proach to real-time trajectory generation for constrained mechanical sys-
tems. In Conference on Decision and Control, 2000.

[9] N. Petit, M. B. Milam, and R. M. Murray. Inversion based constrained tra-
jectory optimization. In 5th IFAC symposium on nonlinear control systems,
2001.

[10] Leena Singh and James Fuller. Trajectory generation for a uav in urban
terrain, using nonlinear mpc. In Proceedings of the American Control Con-
ference, 2001.

16


