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Five Objectives of Microsat

. Dynamics of multiple spacecraft in nearby orbits

. Formation stabilization strategies

1
2
3. Formation reconfiguration algorithms
4

. Mathematical modeling and simulation tools

5. Power requirements and limitations
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Related Activities with JPL

B Genesis Discovery Mission

Uses 3-body problem libration point dynamics and
heteroclinic connections

M Jovian moon missions

Uses transters between different 3-body problem li-
bration point dynamics

B Terrestrial Planet Finder

Uses coordinated control and 3-body dynamics

B Development of LTool

software for libration point missions




B Nonlinear Dynamics & Formation Flight

Study of candidate reference orbits whose nearby or-
bits may support formation flicht

Development of a geometric mechanics framework
for the Kepler-J, dynamics



B Nonlinear Dynamics & Formation Flight

Study of candidate reference orbits whose nearby or-
bits may support formation flicht

Development of a geometric mechanics framework
for the Kepler-J, dynamics

B Control and Optimal Control of For-
mation Flight

Optimal control for formation reconfiguration

Cooperative control

Lyapunov-based global orbit transfer



Three Topics

Dynamics of satellites in Earth orbit

Cluster reconfiguration
Orbital transter.




A Few Key References

® Broucke, R. A. [1994] Numerical integration of periodic orbits in the main problem of arti-
ficial satellite theory. Celestial Mech. Dynam. Astronom. 58 (1994), 99-123.

® Chobotov, V.A. [1991] Orbital Mechanics, AIAA.

® Coffey, D., A. Deprit, and B. Miller [1986] The critical inclination in artificial satellite
theory, Celest. Mech., 39, 365—405.

® Cushman, R.H. [1991] A survey of normalization techniques applied to perturbed Keplerian
systems, Dynamics Reported, 1, 54—-112.

® Golubitsky, M., I. Stewart, and J. Marsden [1987] Generic bifurcation of Hamiltonian
systems with symmetry, Physica 24D, 391-405.

® Marsden, J. E., R. Montgomery and T. S. Ratiu [1990] Reduction, symmetry and
phases in mechanics, Memoirs of the AMS, 436.

® Marsden, J.E. and T.S. Ratiu [1999] Introduction to Mechanics and Symmetry. Texts
in Applied Math., 17, Springer-Verlag, 1994. Second Ed., 1999.

® Moser, J. [1970] Regularization of Kepler’s problem and the averaging method on a manifold,
Commun. on Pure and Applied Math., 23, 609-636.

® Prussing, J.E. and B.A. Conway [1993] Orbital mechanics. Oxford Univ. Press.
® Vinti, J.P. [1998] Orbital and celestial mechanics, ATAA.



Basic J; dynamics

B Satellite in Earth orbit

motion in Kepler potential plus Jy perturbation
Jo = bulge of the Farth

M .5 causes

a drift in the orbit plane (geometric phase)

a drift in the major axis of the ellipse within the (ap-
proximate) orbital plane (direction of drift depends
on the angle of inclination)




Basic J; dynamics

Satellite

Equatorial
Plane

Vernal Equir

Q2 : Right Ascension of Ascending Node
o : Argument of the Perigee

: Tfue Anomaly

Apogee : : ..
[ : Orbit Inclination



Basic J; dynamics

EARTH ROTATES EASTWARD i
APSIDAL ROTATION
DIRECTION w
ELLIPTICAL ORBIT "+':.;._ i >63.4°

DIRECTION & —. /7%
WHEN i <63.4° Lo

ORBIT SWINGS WESTWARD

Frample: inclination = 28 degrees, altitude 300km
period of {2 = roughly 50 days (left)
period of w = roughly 30 days (right).



Poincaré Sections

B Shows rich nonlinear dynamics

B Relative to rotations around the z-axis

Involves Routh reduction; one studies orbits for var-
jous energies h and angular momenta v about the
Z-axIs.

Original problem 6 dimensional: constant h and v
and remove angular variable gives 3 and a Poincaré
section in that is 2-dimensional.




Poincaré Sections
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Poincaré maps for the Jy problem (Broucke, 1992)



Relative Motions

Poincaré sections useful for detecting bifurcations.

What about relative motions?

e Are there relative motions that remain tied together?

e Not obvious because of phase drifts, etc.

To answer this we need to have a closer look at the
dynamics and the role of reduction theory:.

Indeed, there are such interesting orbits (see the posters
for details)




Relative Motions

Relative dynamics (100 days) of a satellite
in a frame moving with a reference satellite



Geometric Mechanics and .Js

B Reduction theory

all the crucial features (€2-drift as a geometric phase
etc) come out naturally

eives a global picture of the dynamics.




Geometric Mechanics and .Js

B Reduction theory

all the crucial features (€2-drift as a geometric phase
etc) come out naturally

eives a global picture of the dynamics.

B Symmaetries

rotational S' symmetry about the vertical axis.

A Zs5 symmetry—reflection in the equatorial plane

Another Zsy symmetry—reflection in vertical planes
+ time reversal—an antisymplectic symmetry.




Moser Regularization

Kepler Hamiltonian H; and dynamics transfered to
geodesics on S°.

Symmetry group is now SO(4)

Momentum map includes the Laplace-Runge-Lenz vec-
tor (a vector pointing to the periapsis):

(r,#) = (L, A) = (r X T, T X (r X T) “Ilil\> .




Symmetry & Reduction

On an energy surface, Keplerian orbits are closed with
the same period—Kepler flow gives an S' action

Total Hamiltonian is a sum:

H=Hy+eHy; €= Jysize
Average with respect to the Keplerian S' action.

Averaged Hamiltonian has symmetry

S x S' % 7y X Zo.
Double reduction-a Keplerian S symmetry and an
axial S symmetry

Discrete symmetries pass to the reduced space




Symmetry & Reduction

reduction map
(gets rid of the angular
variable)

AR




Final Reduced Space—5-

flow parametrized by (Keplerian) energy h and v

bifurcations as h and v are varied; bifurcation oc-
curs at the critical inclination: h?> —5v° =0

fixed points on S? = periodic orbits on S?

singulariyty it angular momentum v = 0; singular
pownts are orbits that head directly into poles

can use energy-momentum methods for stability
and bifurcation

figures show a series of reduced phase portraits for fixed
h as v decreases to zero.



Final Reduced Space—5-

1. h/V/b<v<h
2. 0 < v < h/y/5, (bifurcation at critical inclination)
3. v near zero, 4. v =0 (singular case).



Variational integrators

variational (symplectic) algorithms are remarkably good
in many problems, especially for long term, sensitive
Integrations

need to use symmetry properly

We have developed a reduction theory for discrete me-
chanics and have applied the associated variational in-
tegrators to the Jo problem.




Spacecraft Clusters

M LLoose control

For example, the simultaneous in situ measurement
of the magneto-sphere may require a loose constella-
tion scattered all over the magneto-sphere.




Spacecraft Clusters

M LLoose control

For example, the simultaneous in situ measurement
of the magneto-sphere may require a loose constella-
tion scattered all over the magneto-sphere.

B Precision control

For interferometry, the shape and orientation of the
formation must be maintained to some degree.

Fither

e one has to maintain it very precisely or

e one has to know the relative positions precisely so that
this information can be managed in software.



Spacecraft Clusters

B Performance Metrics

e 1. Coverage analysis—ecstimate of the amount of data
collected. Based on this metric, one could then make quan-
titative tradeoft studies and compare different designs.




Spacecraft Clusters

e 2. Propulsion requirements—the use of natural dynam-
ics greatly affects this.

e 3. Power requirements—cg, battery size contributes sig-
nificantly to the mass of the spacecratt.

e 4. Spacecraft mass—depends not only on the trajectory
design, control algorithm, propulsion and power subsystems,
but also on the launch vehicle capability and launch deploy-
ment strategy:.



Formation Maintenance

Natural dynamics plays a critical role.

since only small changes are presumably needed, stan-
dard linear control technigues should be ade-
quate for maintenance.

one still needs to deal with cooperative techniques as
well as possible combinatorial explosions. Graph theo-
retic methods probably useful.

Utilize the fact that this is a problem with two greatly
differing scales: the relative distances between the satel-
lites (the shape dynamaucs) and the absolute posi-
tion of the cluster as a whole. Geometric mechanics
can help in the separation of these effects.




Formation Reconfiguration

B More challenging

Larger dynamic motions are involved

xxample: reorient the whole formation

Fuel useage 1s potentially critical

B Optimal control

Requires a good first guess

Works best when used with the natural dynamics

B T'wo examples

Trajectory correction maneuvers (TCM)
for halo orbit insertion

Earthbound satellite reconfiguration




TCM for Halo Orbit Insertion

Optimization software used is COOPT:
(COntrol-OPTimization)

Optimizes: cost function = AV subject to the
constraint of the equations of motion.

We vary the number of impulses and also consider the
eflect of delaying the first impulse and the
launch uncertainty.

Makes use of the dynamical systems structure of the
three body problem (especially the invariant manifolds
of halo orbits).




Movie-Optimal Insertion

movie 1nsert




Sensitivity Analysis

*\ Parametric Study of the Optimal Solution

Number of maneuvers:
*Unperturbed injection velocity: 1
*Perturbed injection velocity: 2
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Influence of:
* Delay in TCM1
* Perturbation in launching velocity

i Optimal solutions found for all cases

Varying launch velocity and first manouver delay



Earthbound Satellites

B Alternative software for the reconfigu-
ration problem

NT'C: (nonlinear trajectory generation)

Also uses direct (brute force) optimization

key difference with COOPT: substitutes the forces
using the equations of motion, so one gets a higher
order cost function

avolids treating the equations of motion as constraints
(horrors!)




Earthbound Satellites

B Sample problem

Consider the toy problem of the equations linearized
about a circular orbit without any J, effect.

This 18 not realistic, but it 1s a demonstration
that the software 1s effective.

More generally, one would have to use the full non-
linear equations about a nominal trajectory family:.

Linearization methods here may not be adequate,
but the sofware treats the nonlinear problem with

no difficulty.




Earthbound Satellites

sSpecific Objective: Find a trajectory that mini-
mizes the control energy, over a fixed time, for three
microsats such that at the final configuration the the
microsats will remain on a circle (projection onto the
yz plane) of 100 m radius, 120 degrees apart with no
control force, indefinitely.

Use a rotating frame with coordinate axes so that
the z-axis is along the line of sight from the earth,
while the y-axis is along the orbit and z is perpen-
dicular to these two. The yz plane is what you see
looking up from the Earth.




Earthbound Satellites

Cost Function: minimize

T 3
J :/ Z (\axi
0 =1

Haguations of Motion in normalized coordinates:

Ti = 2y; + 3x; + ay,
yz — —QCL’Z -+ ayi

Z’i — Z_I_a’Zm

2 4 a,, >4 [ 2) dt

where (x;,;, 2;) is the position of the ¢th satellite,
1 =1, ...3 relative to the reterence circular orbit.



Earthbound Satellites

Note that if one substitutes from the equations of
motion, then one gets a cost function that depends
on second order derivatives.

Hinal Time Constraints: Satellites should move
in the known circular solutions of the equations that
lie in the plane 2o + z = 0 with line of sight radius
chosen to be R = 100m.




Optimal Reconfiguration

3D movie insert




Optimal Reconfiguration

Earth movie insert




Information Exchange

The optimal reconfigurations above assume, implicitly,
a centralized controller with full state information.

Can formations (nearly) recover optimal trajectories
through minimum transter of information between satell-
ties (or vehicles) when only certain avenues of commu-
nication and sensing are available?

The communication topology and information flow de-
sign are important questions.

Frample: six cars asked to acquire points on a reg-
ular hexagon (relative to one another) where each car
can only sense its position relative to another car and
can only communicate with one other car.



Information Exchange

e Movie 1 shows the solution for the hexagon problem when the
only sensing information available to each car is the relative
position of the car behind.



Information Exchange

e Movie 2 shows the solution when, in addition, some message
passing from cars to cars ahead of them is available. (Reason-
ably close to the optimal solution).



Lyapunov Orbit Transfer

B Key Features

Method of orbit transter for the Kepler problem with
thrust control, based on Lyapunov stability theory.

Makes use of the conserved quantities of the Kepler
motion; the angular momentum L and the Laplace-
Runge-Lenz vector A.

Traditionally, orbit transfer is designed using conic-
section geometry and orbital elements. No guarantee
of convergence.

The controller we design makes it possible to use
continuous thrust so that we can do orbit transter
without necessarily using a large impulsive thrust.




Lyapunov Orbit Transfer

Lyapunov-based methods are efficient, guarantees
convergence and reduces to many well known cases
such as transfer between circular orbits and a one-
pulse inclination change.

Basic: L and A uniquely specify a Keplerian orbit.

B Some key points

Equation of the motion with control

. r
r= —u - B
Ir][?

where F is the control force.

Fix a Kepler orbit with a given target value (Lp, Ap).




Lyapunov Orbit Transfer

Define V : R? x R? — R by
1 1
V(L.A) = S AL+ [AA]
where AL =L — Ly, AA=A —Apranda > 0.

Use the equations of motion and
L=rxF, A=FxL+1ix(rxF).

to compute the time derivative of V

Design the controller accordingly:
F(I‘, IO.) ta LT7 AT) —
— f(r,r,t) (AL xr+ L x AA+ (AA X1) X 1)

with f(r,r,t) > 0 suitably chosen.




Lyapunov Orbit Transfer

Planar transfer between two coplanar circular orbits
of radii 1 and 2.



Lyapunov Orbit Transfer

Orbit Transfer Movie




The End



The End
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