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Five Objectives of Microsat
� 1. Dynamics of multiple spacecraft in nearby orbits

� 2. Formation stabilization strategies

� 3. Formation reconfiguration algorithms

� 4. Mathematical modeling and simulation tools

� 5. Power requirements and limitations
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Information
�URL’s

� http://www.cds.caltech.edu/microsat/

� http://www.cds.caltech.edu/˜marsden/

� http://www.cds.caltech.edu/˜murray/
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Related Activities with JPL
�Genesis Discovery Mission

� Uses 3-body problem libration point dynamics and
heteroclinic connections

�Jovian moon missions

� Uses transfers between different 3-body problem li-
bration point dynamics

�Terrestrial Planet Finder

� Uses coordinated control and 3-body dynamics

�Development of LTool

� software for libration point missions
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Posters
�Nonlinear Dynamics & Formation Flight

� Study of candidate reference orbits whose nearby or-
bits may support formation flight

� Development of a geometric mechanics framework
for the Kepler-J2 dynamics
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Posters
�Nonlinear Dynamics & Formation Flight

� Study of candidate reference orbits whose nearby or-
bits may support formation flight

� Development of a geometric mechanics framework
for the Kepler-J2 dynamics

�Control and Optimal Control of For-
mation Flight

� Optimal control for formation reconfiguration

� Cooperative control

� Lyapunov-based global orbit transfer
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Three Topics
� Dynamics of satellites in Earth orbit

� Cluster reconfiguration

� Orbital transfer.
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Basic J2 dynamics
�Satellite in Earth orbit

� motion in Kepler potential plus J2 perturbation

� J2 = bulge of the Earth

� J2 causes

� a drift in the orbit plane (geometric phase)

� a drift in the major axis of the ellipse within the (ap-
proximate) orbital plane (direction of drift depends
on the angle of inclination)
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Basic J2 dynamics
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Basic J2 dynamics

Example: inclination = 28 degrees, altitude 300km
period of Ω = roughly 50 days (left)
period of ω = roughly 30 days (right).
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Poincaré Sections
�Shows rich nonlinear dynamics

�Relative to rotations around the z-axis

� Involves Routh reduction; one studies orbits for var-
ious energies h and angular momenta ν about the
z-axis.

� Original problem 6 dimensional: constant h and ν
and remove angular variable gives 3 and a Poincaré
section in that is 2-dimensional.
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Poincaré Sections

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

H
2
= 0.15

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

H
2
= 0.1641

r

rd

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

H
2
= 0.17

r

rd

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

H
2
= 0.18

r

rd

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

H
2
= 0.19

r

rd

Poincaré maps for the J2 problem (Broucke, 1992)
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Relative Motions
� Poincaré sections useful for detecting bifurcations.

� What about relative motions?

• Are there relative motions that remain tied together?

• Not obvious because of phase drifts, etc.

� To answer this we need to have a closer look at the
dynamics and the role of reduction theory.

� Indeed, there are such interesting orbits (see the posters
for details)
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Relative Motions
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Geometric Mechanics and J2

�Reduction theory

� all the crucial features (Ω-drift as a geometric phase
etc) come out naturally

� gives a global picture of the dynamics.
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Geometric Mechanics and J2

�Reduction theory

� all the crucial features (Ω-drift as a geometric phase
etc) come out naturally

� gives a global picture of the dynamics.

�Symmetries

� rotational S1 symmetry about the vertical axis.

� A Z2 symmetry—reflection in the equatorial plane

� Another Z2 symmetry—reflection in vertical planes
+ time reversal—an antisymplectic symmetry.
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Moser Regularization
� Kepler Hamiltonian H0 and dynamics transfered to

geodesics on S3.

� Symmetry group is now SO(4)

� Momentum map includes the Laplace-Runge-Lenz vec-
tor (a vector pointing to the periapsis):

(r, ṙ) �→ (L,A) =

(
r × ṙ, ṙ × (r × ṙ) − µ

r

‖r‖

)
.
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Symmetry & Reduction
� On an energy surface, Keplerian orbits are closed with

the same period—Kepler flow gives an S1 action

� Total Hamiltonian is a sum:

H = H0 + εH1; ε = J2 size

� Average with respect to the Keplerian S1 action.

� Averaged Hamiltonian has symmetry

S1 × S1 × Z2 × Z2.

� Double reduction–a Keplerian S1 symmetry and an
axial S1 symmetry

� Discrete symmetries pass to the reduced space
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Symmetry & Reduction
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Final Reduced Space–S2

� flow parametrized by (Keplerian) energy h and ν

� bifurcations as h and ν are varied; bifurcation oc-
curs at the critical inclination : h2 − 5ν2 = 0

� fixed points on S2 = periodic orbits on S3

� singularity if angular momentum ν = 0; singular
points are orbits that head directly into poles

� can use energy-momentum methods for stability
and bifurcation

� figures show a series of reduced phase portraits for fixed
h as ν decreases to zero.
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Final Reduced Space–S2
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Variational integrators
� variational (symplectic) algorithms are remarkably good

in many problems, especially for long term, sensitive
integrations

� need to use symmetry properly

� We have developed a reduction theory for discrete me-
chanics and have applied the associated variational in-
tegrators to the J2 problem.
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Spacecraft Clusters
�Loose control

� For example, the simultaneous in situ measurement
of the magneto-sphere may require a loose constella-
tion scattered all over the magneto-sphere.
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Spacecraft Clusters
�Loose control

� For example, the simultaneous in situ measurement
of the magneto-sphere may require a loose constella-
tion scattered all over the magneto-sphere.

�Precision control

� For interferometry, the shape and orientation of the
formation must be maintained to some degree.

� Either
• one has to maintain it very precisely or

• one has to know the relative positions precisely so that
this information can be managed in software.
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Spacecraft Clusters
�Performance Metrics

• 1. Coverage analysis–estimate of the amount of data
collected. Based on this metric, one could then make quan-
titative tradeoff studies and compare different designs.
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Spacecraft Clusters
• 2. Propulsion requirements–the use of natural dynam-

ics greatly affects this.

• 3. Power requirements–eg, battery size contributes sig-
nificantly to the mass of the spacecraft.

• 4. Spacecraft mass–depends not only on the trajectory
design, control algorithm, propulsion and power subsystems,
but also on the launch vehicle capability and launch deploy-
ment strategy.
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Formation Maintenance
� Natural dynamics plays a critical role.

� since only small changes are presumably needed, stan-
dard linear control techniques should be ade-
quate for maintenance.

� one still needs to deal with cooperative techniques as
well as possible combinatorial explosions. Graph theo-
retic methods probably useful.

� Utilize the fact that this is a problem with two greatly
differing scales: the relative distances between the satel-
lites (the shape dynamics) and the absolute posi-
tion of the cluster as a whole. Geometric mechanics
can help in the separation of these effects.
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Formation Reconfiguration
�More challenging

� Larger dynamic motions are involved

� Example: reorient the whole formation

� Fuel useage is potentially critical

�Optimal control

� Requires a good first guess

� Works best when used with the natural dynamics

�Two examples

�Trajectory correction maneuvers (TCM)
for halo orbit insertion

� Earthbound satellite reconfiguration
26



TCM for Halo Orbit Insertion
� Optimization software used is coopt:

(COntrol–OPTimization)

� Optimizes: cost function = ∆V subject to the
constraint of the equations of motion .

� We vary the number of impulses and also consider the
effect of delaying the first impulse and the
launch uncertainty .

� Makes use of the dynamical systems structure of the
three body problem (especially the invariant manifolds
of halo orbits).
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Movie-Optimal Insertion

movie insert
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Sensitivity Analysis

Computational Science and Engineering

Parametric Study of the Optimal Solution

Influence of:
 Delay in TCM1
 Perturbation in launching velocity

Optimal solutions found for all cases

Number of maneuvers:
 Unperturbed injection velocity: 1
 Perturbed injection velocity: 2           
•

•

•
•

Varying launch velocity and first manouver delay
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Earthbound Satellites
�Alternative software for the reconfigu-
ration problem

� NTG (nonlinear trajectory generation)

� Also uses direct (brute force) optimization

� key difference with coopt: substitutes the forces
using the equations of motion, so one gets a higher
order cost function

� avoids treating the equations of motion as constraints
(horrors!)
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Earthbound Satellites
�Sample problem

� Consider the toy problem of the equations linearized
about a circular orbit without any J2 effect .

� This is not realistic, but it is a demonstration
that the software is effective .

� More generally, one would have to use the full non-
linear equations about a nominal trajectory family.

� Linearization methods here may not be adequate,
but the sofware treats the nonlinear problem with
no difficulty.
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Earthbound Satellites
� Specific Objective: Find a trajectory that mini-

mizes the control energy, over a fixed time, for three
microsats such that at the final configuration the the
microsats will remain on a circle (projection onto the
yz plane) of 100 m radius, 120 degrees apart with no
control force, indefinitely.

� Use a rotating frame with coordinate axes so that
the x-axis is along the line of sight from the earth,
while the y-axis is along the orbit and z is perpen-
dicular to these two. The yz plane is what you see
looking up from the Earth.
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Earthbound Satellites
� Cost Function: minimize

J =

∫ T

0

3∑
i=1

(
|axi

|2 + |ayi
|2 + |azi

|2
)

dt

� Equations of Motion in normalized coordinates:

ẍi = 2ẏi + 3xi + axi

ÿi = −2ẋi + ayi

z̈i = z + azi
,

where (xi, yi, zi) is the position of the ith satellite,
i = 1, . . . 3 relative to the reference circular orbit.
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Earthbound Satellites
� Note that if one substitutes from the equations of

motion, then one gets a cost function that depends
on second order derivatives.

� Final Time Constraints: Satellites should move
in the known circular solutions of the equations that
lie in the plane 2x + z = 0 with line of sight radius
chosen to be R = 100m.
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Optimal Reconfiguration

3D movie insert
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Optimal Reconfiguration

Earth movie insert

36



Information Exchange
� The optimal reconfigurations above assume, implicitly,

a centralized controller with full state information.

� Can formations (nearly) recover optimal trajectories
through minimum transfer of information between satell-
ties (or vehicles) when only certain avenues of commu-
nication and sensing are available?

� The communication topology and information flow de-
sign are important questions.

�Example : six cars asked to acquire points on a reg-
ular hexagon (relative to one another) where each car
can only sense its position relative to another car and
can only communicate with one other car.

37



Information Exchange
• Movie 1 shows the solution for the hexagon problem when the

only sensing information available to each car is the relative
position of the car behind.
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Information Exchange
• Movie 2 shows the solution when, in addition, some message

passing from cars to cars ahead of them is available. (Reason-
ably close to the optimal solution).
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Lyapunov Orbit Transfer
�Key Features

� Method of orbit transfer for the Kepler problem with
thrust control, based on Lyapunov stability theory.

� Makes use of the conserved quantities of the Kepler
motion; the angular momentum L and the Laplace-
Runge-Lenz vector A.

� Traditionally, orbit transfer is designed using conic-
section geometry and orbital elements. No guarantee
of convergence.

� The controller we design makes it possible to use
continuous thrust so that we can do orbit transfer
without necessarily using a large impulsive thrust.
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Lyapunov Orbit Transfer
� Lyapunov-based methods are efficient, guarantees

convergence and reduces to many well known cases
such as transfer between circular orbits and a one-
pulse inclination change.

� Basic: L and A uniquely specify a Keplerian orbit.

�Some key points

� Equation of the motion with control

r̈ = −µ
r

‖r‖3
+ F

where F is the control force.

� Fix a Kepler orbit with a given target value (LT ,AT ).
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Lyapunov Orbit Transfer
� Define V : R

3 × R
3 → R by

V (L,A) =
1

2
a ‖∆L‖2 +

1

2
‖∆A‖2 ,

where ∆L = L − LT , ∆A = A − AT and a > 0.

� Use the equations of motion and

L̇ = r × F, Ȧ = F × L + ṙ × (r × F).

to compute the time derivative of V

� Design the controller accordingly:

F(r, ṙ, t;LT ,AT ) =

− f (r, ṙ, t) (a∆L × r + L × ∆A + (∆A × ṙ) × r)

with f (r, ṙ, t) > 0 suitably chosen.
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Lyapunov Orbit Transfer
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Lyapunov Orbit Transfer

Orbit Transfer Movie
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The End
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