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Abstract— This paper considers a group of agents that aim

to reach an agreement on individually measured time-varying

signals by local communication. In contrast to static network

averaging problem, the consensus we mean in this paper is

reached in a dynamic sense. A discrete-time dynamic average

consensus protocol can be designed to allow all the agents

tracking the average of their reference inputs asymptotically.

We propose a minimal-time dynamic consensus algorithm,

which only utilises minimal number of local observations of

randomly picked node in a network to compute the final

consensus signal. Our results illustrate that with memory and

computational ability, the running time of distributed averaging

algorithms can be indeed improved dramatically using local

information as suggested by Olshevsky and Tsitsiklis.

I. INTRODUCTION

The central goal in multi-agent systems is to design a local
control law in response to local information while ensuring
that the desired global behaviour. Fuelled by applications in
a variety of fields, [1], [2], [3], [4], [5], [6], [7], [8], [9], there
has been a recent surge of interest in consensus dynamics.
Broadly speaking, a consensus problem is one in which
several spatially distributed agents or processors are seeking
agreement upon a certain quantity of interest (for example,
attitude, position, velocity, voltage, direction, temperature,
and so on) but without recourse to a central coordinator or
global communication. Well-known results [10], [11] give
conditions to ensure that the state of each agent reaches the
consensus value asymptotically using simple linear decen-
tralised control law.

A large number of consensus problems studied so far are
static, in the sense that the system is autonomous. However,
the nature of decentralised control requires tight coordination
among agents in a possibly dynamic environment. The dy-
namic average consensus problem arises in different contexts,
such as formation control [12], distributed Kalman filtering
[13] and load balancing [8]. These tasks require that all
agents agree on the average of time-varying signals rather
than the static average value [14], [15], [16], [17].

Similar to the static consensus problem, we are particularly
interested in the following questions: first, what are the
conditions on both the network and the signal such that the
dynamic consensus is achieved? Second, how long does it
take to reach such consensus? For the first question, some
results are presented in [14], [15]. However, in all previ-
ous studies, the dynamic consensus signal is only reached
asymptotically. This paper is motivated by the following
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Fig. 1. Control diagram of dynamic consensus, the plant in consensus
problem is usually a first order integrator. L is the Laplacian matrix defined
later. F is the potential nonlinear dynamics however in this paper, we only
consider linear dynamics and therefore F = I . In contrast to the existed
result, we only use minimal number of successive observations of any node
in the network and use a local algorithm to compute the final consensus
signal.

observations: 1) there does not exist any criteria that each
individual node can use to check whether the dynamic
consensus is reached or not; 2) it takes arbitrarily long time to
reach consensus; 3) the consensus is achieved at the expense
of frequent communication [15].

Practically speaking, it is unsatisfactory to require an
arbitrary long time to know the consensus value/signal, a lot
of efforts have been made to increase the converge speed.
For static consensus problem, Olshevsky and Tsitsiklis [18],
[19] stated the fundamental limitation on the convergence
speed of such consensus-type dynamics. In Zhang et al [20],
model predictive control is used to speed up the consensus
process, while a new protocol for finite-time consensus is
designed in Cortes [21] and Wang and Xiao [22]. Sundaram
and Hadjicostis [23] proposed an algorithm that computed
the asymptotic final consensus value of the network in finite-
time, Yuan et al [24], [25] proposed an algorithm for an
arbitrarily chosen agent to compute the asymptotic final value
of the network in a minimal-time. As shown in Fig. 2, for 6-
node network, static consensus, it requires about 62 discrete-
time steps to reach a small range of consensus value. By
using the algorithm proposed in [25], it only uses 8 steps for
node 1 to compute the consensus value merely using its own
values.

One may then raise a similar question: how to improve
the convergence time for dynamic consensus? This paper
investigates the problem of computing the final consensus
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Fig. 2. Above: underlying topology with sampling time � = 1/6.
Below: randomly stimulate the network with static input, and it requires
approximately 40 steps to reach a small range (say 0.05) of consensus
value.

signal of a random node (e.g., a sensor or a computer with
some computational power) using only its own empirical
values and in a finite and minimal amount of time.

The paper is organised as follows: after introducing back-
ground in Section II, main algorithm and results about the
dynamic consensus are presented in Section III. Illustrative
examples are provided in IV to verify the theoretical analysis.

II. BACKGROUND

A. Notation

The notation in this paper is standard. For a matrix A ∈
RM×N , A[i, j] ∈ R denotes the element in the i

th row and
j
th column, A[i, :] ∈ R1×N denotes its i

th row, A[:, j] ∈
RM×1 denotes its j

th column and A[i1 : i2, j1 : j2] ∈
R(i2−i1+1)×(j2−j1+1) denotes the submatrix of A defined by
the rows i1 to i2 and the columns j1 to j2. For a column
vector α ∈ RN×1, α[i] denotes its i

th element. Similarly
for a row vector β ∈ R1×N , β[i] denotes its i

th element.
We denote by e

T
r = [0, . . . , 0, 1rth , 0, . . . , 0] ∈ R1×N . IN

denotes the identity matrix of dimension N .

B. Static consensus

Consensus problem have been studied by many researchers
in the literature. We consider here undirected graphs denoted
by G = (V, E ,W ) (note that all results in this paper can
be generalised to directed graphs), where V = {ν1, . . . , νn}
is the set of nodes, E ⊂ V × V is the set of edges, and
the adjacency matrix W = W

T = {W [i, j]}i,j=1,...,n ∈
Nn×n

≥0 , with W [i, j] = 1 when there is a link from i to j,
and W [i, j] = 0 when there is no link from i to j. Let
x[i] ∈ R denote the state of node i, which might represent
a physical quantity such as attitude, position, temperature,
voltage, etc. Considering the classical consensus protocol

[11], the consensus dynamics of a network of continuous-
time integrator agents is defined by:

ẋ(t) = −Lx(t), (1)

where L ∈ Rn×n is the Laplacian matrix induced by
the topology G defined as L[i, i] =

�n
l �=i W [i, l], ∀i =

1, . . . , n and L[i, j] = −W [i, j], ∀i �= j. Applying a time-
discretisation scheme on (1) yields the following discrete-
time network dynamics:

xk+1 = P�xk, (2)

with P� = In − �L, where � is the sampling time. When �

is fixed, we consider the following update law:

xk+1 = Axk,

yk = e
T
r xk = xk[r]. (3)

where xk ∈ Rn, A � P� and yk ∈ R is the measurable output
which corresponds to an arbitrarily chosen agent labelled r

at discrete-time step k.

C. Dynamic consensus

Motivated by applications such as mobile networks and
distributed Kalman filtering, we consider the scenario when
the system has input signals instead of the standard static
stimulus x0. In this case, every node could receive a signal,
e.g. ramp, sinusoid with possibly different amplitudes and
frequencies. The goal of this consensus network is to reach
a weighted average of these input signals for all nodes
[14]. Hence, in contrast to the static consensus problem, the
consensus is reached in a dynamic sense. More specifically,
assume that each agent i has an associated signal S[i]
with value sk[i] at different discrete-time step k. We define
the vector sk, which contains the individual sk[i] as its
components. Dynamic consensus can be viewed as a situation
in which all agents asymptotically track the evolution of
some aggregate network quantity. In addition to the input
signals S[i], each agent maintains a local variable xk[i],
which is a time-varying estimate of the instantaneous average
value for node i at time k.

Definition 1 (Asymptotic dynamic consensus): System
(3) is said to asymptotically achieve dynamic consensus
with input signal S = [S[1], S[2], · · · , S[n]]T if for any
i, j

lim
k→∞

�xk[i]− xk[j]� → 0. (4)
Under the consensus protocol that ensures tracking of the

consensus signal (see next section), we focus on any chosen
node r and compute the consensus signal using minimal
number of its own observations. Note that additional assump-
tions on the input signals are needed to guarantee discrete-
time consensus [15] since, for certain input signals, there
may exist steady-state errors due to the poles introduced by
the input signals. Fig. 1 in [14] shows a non-zero steady-state
error for ramp inputs. We will then derive such conditions
in the next section.



III. DECENTRALISED MINIMAL-TIME DYNAMIC
CONSENSUS COMPUTATION ALGORITHM

A. System model for dynamic consensus

Consider the discrete time LTI dynamics in eq. (3) where
an arbitrarily chosen state x[r] is observed. The decentralised
problem is to compute the dynamic consensus signal of the
network φk at time step k using only its own previously
observed values yk = xk[r]. We consider the extended
model of eq. (3) instead of the standard static consensus
problem. The dynamic consensus will track the weighted
average signal Φ asymptotically.

This section proposes the dynamic version of decentralised
consensus computation algorithm, i.e. it computes the fi-
nal consensus signal using minimal amount of successive
discrete-time observations of any node, say node r, in the
network. In particular, we assume that node r in the network
does not have access to any other external information about
the input signals and the network, such as, the type of
signals, total number of agents n in the network (3), its local
communication links or even the state values/number of its
neighbours.

Similar to static consensus protocol, consider the decen-
tralised protocol

xk+1 = Axk + uk,

yk = e
T
r xk = xk[r], (5)

where uk is the unknown input/disturbance. In most cases,
uk = sk; for certain applications, we let uk = sk − sk−1 to
guarantee the consensus of some signals with pole at 1, for
example, ramp.

xk+1 = Axk + sk − sk−1,

yk = e
T
r xk = xk[r]. (6)

Left multiplying a vector 1T to both sides of eq. (6) yields

1T (xk+1 − xk) = 1T (sk − sk−1),

since 1T
A = 1T . It then follows 1T

xk+1 = 1T
sk. More-

over, after some mathematical manipulation on eq. (6) and
letting ek+1 � xk+1 − 1

n11
T
sk, we have

ek+1 = Aek + (I − 1

n
11T )(sk − sk−1).

Take the Z-transform,

E(z) = (zI −A)−1(I − 1

n
11T )(1− z

−1)S(z) (7)

Let E(z) � X(z)− 11T

n Z(z) and assume the matrix A can
be decomposed as

A =
n�

i=1

λi(A)viv
T
i .

From the eigenvalue relation that λi(A) = 1 − �λi(L) and
the eigenvector corresponding to 0 is 1. Let H(z) = (zI −
A)−1(I− 1

n11
T ), and following a similar analysis as in [14],

we know that the pole 1 of (zI−A)−1 will be cancelled by

multiplying (I − 1
n11

T ). Then we use final value theorem
to find out the final error

e∞ = lim
z→1

(z − 1)E(z). (8)

e∞ = 0 if E(z) has at most one pole at 1.
This system is reaching consensus asymptotically under

various conditions on sampling time, underlying topology
which are developed in [15]. In the following part of this
paper, we are assuming that these conditions for guaranteeing
consensus are all satisfied. The goal of this paper is not to
develop new theory or condition on consensus, but to focus
on developing an algorithm that computes such dynamic con-
sensus signal using minimal number of successive outputs.

Remark 1: The information used in the proposed algo-
rithm was solely based on the accumulation of successive
state values of the agent under consideration. No further
information about the network and signal is used.

Remark 2: More importantly, so far to the authors’ best
knowledge there does not exist a criteria for any node in
the network to check whether dynamic consensus is reached
or not using merely its own observations. In other word,
unlike static consensus problems, the node does not know
whether the dynamic consensus is reached or not. Hence,
the proposed algorithm also provides a purely decentralised
way to check dynamic consensus.

For the purpose of main algorithm in Section III-B, we
need to impose the following assumption for the input
signals, we will later consider when the assumption does
not hold in Section V.

Assumption 1: The Z-transform of such input signal at
each node must have a finite number of poles.

Remark 3: In engineered systems, there is a set of signals,
e.g., step, ramp, sinusoid, that are commonly used. They all
satisfy the above assumption. Alternatively, one may think of
the scenario that these signals are the estimations of the same
linear process by different nodes. Again, the assumption is
still satisfied.

Taking the Z-transform on both sides of eq. (6), zX(z) =
AX(z) + (1− z

−1)S(z) leads to

Y (z) = e
T
r X(z) = e

T
r (zI −A)−1(1− z

−1)S(z)

� y0 + y1z
−1 + · · · .

Let Φ(z) � φ0 + φ1z
−1 + · · · , where φk = 1

n1
T
xk. Y (z)

is usually different from the consensus signal, but it has the
property for consensus in that

lim
K→∞

�yK − φK� → 0 (9)

B. Main algorithm for minimal-time dynamic consensus

From eq. (6) and [25], we have the following regression
for the observations.

Proposition 1: Given a linear system (3) and an input sig-
nal vector Z satisfying assumption 1, there exist a d ∈ N and
scalars α0, ...,αd such that the following linear regression
equation must be satisfied ∀k ∈ N ≥ 0,

yk+d+1 + αdyk+d + . . .+ α1yk+1 + α0yk = 0. (10)



Proof: Taking the Z-transform on both sides of equation
zX(z) = AX(z) + (1 − z

−1)S(z) leads to Y (z) =
e
T
r X(z) = e

T
r (zI − A)−1(1 − z

−1)S(z). By assuming that
the number of poles of S(z) is finite and noticing that
e
T
r (zI − A)−1 has finite poles [24], then the multiplication

has finite poles and therefore it can be written in the form
of eq. (10).

Remark 4: An algebraic characterisation of d for static
consensus is given in [24] deriving from the Jordan block
decomposition. In the dynamic case, d is a function of input
signal S and linear matrix A.

Remark 5: If we can obtain the unknown coefficients in
eq. (10) from data, then we can compute future outputs
recursively from eq. (10) and past outputs. If we let Dr,s+1
be the length of the regression in eq. (10) then Proposition 1
also indicates that some scalars α0, ...,αDr,s , the following
equation always holds:

yk+Dr,s+1+αDr,syk+Dr,s + . . .+α1yk+1+α0yk = 0. (11)
To obtain such coefficients α0, ...,αDr,s , we first introduce

the definition of Hankel matrix which will be intensively
used in the algorithm.

Definition 2: The Hankel matrix associated with a data
set consisting of successive discrete-time values Y0,1,··· ,2k �
{y0 = x0[r], y1 = x1[r], . . . , y2k = x2k[r]}(k ∈ Z) is
defined as follows:

Γ(y0, y1, y2, · · · , y2k) =





y0 y1 y2 · · ·
y1 y2 y3 · · ·

y2 y3
. . .

...
... y2k




, (12)

with constant skew-diagonals.
A nice property of such Hankel matrix is the following

Kronecker Theorem.
Theorem 1: [Kronecker Theorem][29] The Hankel matrix

Γ{Y0,1,···} has finite rank if and only if f(z) � x0[r] +
x1[r]/z + · · · is a rational function with respect to z. What
is more, the rank of the Hankel matrix Γ{Y0,1,···} is equal
to the number of poles of f(z).

Remark 6: This Theorem links the the rank of a specially
constructed matrix to the number of poles of a rational
transfer function.

We now present the main procedure for reconstructing
the coefficients. Without loss of generality, assume that the
outputs start from discrete-time step 0. It is easy to remove
these assumptions, e.g. see [24]. From Proposition 1 and
Kronecker Theorem, when increasing the dimension of this
Hankel matrix it will eventually lose rank. When it does, at
discrete-time step k = 2Dr,s + 2, where Dr,s is defined in
eq. (10), compute its normalised kernel:

Γ(y0, y1, , · · · , y2Dr,s+2)
�
α0 α1 . . . αDr,s 1

�T
= 0.
(13)

It can be shown that the normalised kernel obtained from
eq. (13) corresponds to the coefficients in eq. (11) [24].

Define d(z) = z
Dr,s+1 +

�Dr,s

i=1 αiz
i and let

n(z) � d(z)(y0 + y1/z + y2/z
2 + · · · )

then by multiplication, we have n(z) � �Dr,s

i=1 niz
i
.

From eq. (11), the coefficients from eq. (13) and past
outputs we can predict future values of yk, for all k ≥
2Dr,s + 3. In addition, the explicit expression of Y (z) =
e
T
r (zI −A)−1(1− z

−1)S(z) can be obtained by taking the
Z-transform of eq. (10).

To predict the future outputs of the observation at time K

(it is actually the averaged signal under the assumption that
the network reached consensus), we can use the expansion of
a SISO transfer function and check the coefficient of z−K .

We first define a reversion map R which takes z
−m to

z
m, i.e., if Y (z) = y0 + y1z

−1 + · · · , then R{Y (z)} =
y0 + y1z + · · · . It is not hard to show that

R
�
n(z)

d(z)

�
=

n(z−1)

d(z−1)

Then yK can be computed by the following equality

yK =
1

K!





d
KR

�
n(z)
d(z)

�

dzK





z=0

, (14)

when Y (z) has a complicated form to take the K
th deriva-

tive, we could first use partial expansion to decompose it to
a summation of simple expressions, i.e., Y = Y

1+ · · ·+Y
l,

where Y
is have less poles than Y. We can apply eq. (14) to

Y
i to get yiK and then

yK = y
1
K + · · ·+ y

l
K .

The whole algorithm can be written as follows:

Algorithm 1 Decentralised minimal-time dynamic consensus
value computation with input signal constraints
Data: Successive observations of yi = xi[r], i = 0, 1, · · · .
Result: Final consensus signal at time K: φK .
Step 1: Increase the dimension k of the square Hankel
matrix Γ{Y0,1,··· ,2k} until it loses rank and store the first
defective Hankel matrix.
Step 2: The kernel S =

�
α0 . . . αDr,s 1

�T of the first
defective Hankel matrix gives the coefficients of eq. (10).
Step 3: Compute Y (z) = y0+y1/z+ · · · and from then, we
can compute φK ≈ yK (when K is large) using the above
procedure in eq. (14).

Example 1: Let Y0,1,2,3,··· = (1, p, p
2
, p

3
, · · · ), then

Γ(Y0,1,··· ,2k) =




1 p · · ·
p p

2 · · ·
...

...
. . .



 .

We found that the Hankel matrix loses rank when k = 1.
The normalised kernel of this Hankel matrix is [−p, 1]T .
Let Y (z) = 1 + p/z + · · · and d(z) = z − p, then n(z) =
Y (z)d(z) = z, so Y (z) writes

Y (z) =
n(z)

d(z)
=

z

z − p
.



For example, let K = 3, then

yK =
1

K!





d
KR

�
n(z)
d(z)

�

dzK





z=0

= p
3
,

which is consistent.

IV. SIMULATION

In this section, we use examples to illustrate the results
stated in the previous sections.

Example 2: First, we consider a simple connected 4-node
network in [14] in Fig. 3(a). We then stimulate the network
with ramp inputs with different magnitude, as we can see that
the consensus is reached in a dynamic and unstable sense
in Fig. 3(c). Which is consistent to the consens analysis in
Section III-A. Next we apply more complicated input signals
and illustrate the above algorithm. Without loss of generality,
we assume we can access the observations of node, i.e.,
r = 1. Let x0 =

�
3.5784 2.7694 −1.3499 3.0349

�T

and a0 =
�
1/2 −1/2 1/2 −1/2

�T , then for any input
signal i, sk[i] = kx0[i]a0[i]k. We stimulate the system with
signals and use the local update protocol in eq. (6). The
trajectory of every nodes are plotted in blue whereas the
consensus signal is plotted in red in Fig. 3(d). By applying
the algorithm listed above step by step, we can obtain the
consensus signal in eq. (15) using 19 successive observations.

Example 3: We then consider a more complicated 10-
node random directed network (small-world network) [5]
with Gsw(n, 2d, p), where n is the number of nodes in the
network, 2d is the degree of each node in the initial graph,
and p is the probability of rewiring an edge. We choose here
n = 10, d = 1, p = 0.1, see Fig. 3(b). For input signals
chosen as zk[i] = x0[i] ∗ k

1
5 , with randomly chosen x0, we

can then obtain the consensus signal using 23 successive
observations.

V. ASSUMPTION RELAXATION

In this section, we will consider the case that when
Assumption 1 does not hold. It could be the case that uk[r] in
eq. (5) is noise or complicated signal. The major difference
is that the following Hankel matrix will not lose rank at
any finite dimension since some of the input signal does
not have finite poles. Let Y0,1,··· ,2k � {y0 = x0[r], y1 =
x1[r], . . . , y2k = x2k[r]}(k ∈ Z) ,

Γ(Y0,1,··· ,2k) =





y0 y1 y2 · · ·
y1 y2 y3 · · ·

y2 y3
. . .

...
... y2k




.

In this case, the idea is to find a Hankel matrix
Γ(Ŷ0,1,··· ,2k) to approximate (close enough in some measure)
Γ(Y0,1,··· ,2k). Γ(Ŷ0,1,··· ,2k) has finite rank and therefore can
be used to estimate the final consensus signal.

(a) 4-node ring. (b) 10-node small-world network.
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(c) Trajectory of each node in Example 2, the red
one is the consensus signal.
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(d) Trajectory of each node in Example 2, the red one is the
consensus signal.
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(e) Trajectory of each node in Example 3, whereas the red one is the
consensus signal.

Fig. 3. Networks and node trajectories in Example 2 and Example 3 with
4-node ring and 10-node small world configuration respectively.



Step 1: We start to increase the dimension k of the square Hankel matrix Γ{Y0,1,··· ,2k} until it loses rank and store the first
defective Hankel matrix.
Step 2: We found that when k = 9, the Hankel matrix loses its rank and then we can compute its kernel

S =
�
0 0.0069 −0.0069 −0.1181 0.1181 0.6111 −0.6111 −1.0000 1.0000

�T
.

Step 3: Compute Y (z) = y0 + y1/z + · · · and from then, we can compute yK using eq. (14) and finally approximate the
final consensus signal at large time step K, i.e., φK as yK .

Y (z) =
−2.952z6 + 1.257z5 + 1.647z4 + 0.2067z3 − 0.7575z2 − 0.01911z + 0.01492

z7 − z6 − 0.6111z5 + 0.6111z4 + 0.1181z3 − 0.1181z2 − 0.006944z + 0.006944
. (15)

Γ(Ŷ0,1,··· ,2k) = argmin�Γ(Y0,1,··· ,2k)− Γ(Ŷ0,1,··· ,2k)�,
(16)

s.t.: detΓ(Ŷ0,1,··· ,2k) = 0,Γ(Ŷ0,1,··· ,2k) is Hankel

here � · � can be any norm, from the fact that

E{(Γ(Y0,1,··· ,2k)− Γ(Ŷ0,1,··· ,2k))
T (Γ(Y0,1,··· ,2k)− Γ(Ŷ0,1,··· ,2k))}

= Γ(Y0,1,··· ,2k)
TΓ(Y0,1,··· ,2k) + Noise Cov. Matrix,

where E{·} is the expected value, this means that 2-norm
can be a good candidate measure for solving the problem.
To solve the above problem, we resort the following lemma.

Lemma 1: [30] Let x ∈ Rn, then there exists a Hankel
matrix D ∈ Rn×n, such that

Dx = x and �D�2 ≤ 1.
Proposition 2: [31] Assume that the Hankel matrix

Γ(Y0,1,··· ,2k) has full rank, then

min �Γ(Y0,1,··· ,2k)−H(k, k)�2 = σ(Γ(Y0,1,··· ,2k)) (17)
s.t.: detH(k, k) = 0,H(k, k) is Hankel.

where H(k, k) can be obtained by the following Algo-
rithm 2.

Proof: Before referring to the algorithm, we first define
hvec operator mapping from square Hankel matrix Rn×n

to a vector R(2n+1)×1. For example, hvec(Γ(Y0,1,··· ,2k)) =�
y0 y1 · · · y2k

�T . We now propose the algorithm for
computing the nearest defective Hankel matrix with respect
to Γ(Y0,1,··· ,2k). From Algorithm 2, we can see that H(k, k)
satisfies the constraints in the optimisation (16), because

1. by construction, H(k, k) is Hankel;
2. it is easy to verify that the constructed Hankel matrix

D satisfying Dv(Γ(Y0,1,··· ,2k) = v(Γ(Y0,1,··· ,2k)), then

H(k, k)v(Γ(Y0,1,··· ,2k)) = Γ(Y0,1,··· ,2k)v(Γ(Y0,1,··· ,2k))

− σ(Γ(Y0,1,··· ,2k))Dv(Γ(Y0,1,··· ,2k))

= 0.

As a consequence, H(k, k) does not have full rank;
3. since H(k, k) − Γ(Y0,1,··· ,2k) = −σ(Γ(Y0,1,··· ,2k))D

and �D�2 ≤ 1, then

�H(k, k)− Γ(Y0,1,··· ,2k)�2 ≤ σ(Γ(Y0,1,··· ,2k)).

Therefore, we can choose Γ(Ŷ0,1,··· ,2k) = H(k, k) as the
solution of optimisation (16).

Algorithm 2 Computing the nearest defective Hankel matrix
Step 1: Form the observations as a square Hankel matrix,
take a singular value decomposition of Γ(Y0,1,··· ,2k) and find
the smallest singular value σ(Γ(Y0,1,··· ,2k)) and correspond-
ing singular vector v(Γ(Y0,1,··· ,2k));
Step 2: Compute the Hankel vector

hvec(D) = C
+
x C

T
x e1,

where C
+
x is the Moore-Pensore pseudoinverse of Cx, e1 =

[1, 0, . . . , 0]T has length of 2n− 1 and

Cx =





v[1], . . . , v[n]
. . . . . .

v[1] . . . v[n]
v[n] v[1] . . . v[n− 1]

...
. . . . . .

...
v[2] . . . v[n] v[1]





.

Step 3: Let H(k, k) = Γ(Y0,1,··· ,2k)− σ(Γ(Y0,1,··· ,2k))D.

Remark 7: σ(Γ(Y0,1,··· ,2k)) quantifies how good the ap-
proximation is, more specifically, if it is large, then we
probably need more observations to increase the dimension
of the Hankel matrix to have a better approximation.

From above analysis, we have the following procedures
(see Algorithm 3). We can apply this receding-horizon al-

Algorithm 3 Decentralised minimal-time dynamic consensus
value computation without input signal constraints
Data: Successive observations of yi = xi[r], i = 0, 1, · · · .
Result: Final consensus signal at time K: φK .
Step 1: At each time step k starting form 0, we take the
singular value decomposition of Γ(Y0,1,··· ,2k) = UΣV T ,
where Σ = diag{σ1, σ2, . . . ,σk+1} with σ1 ≥ σ2 . . . ≥
σk+1 = σ(Γ(Y0,1,··· ,2k));
Step 2: If σ(Γ(Y0,1,··· ,2k)) ≤ �, where � ∈ R+

is a prescribed value, otherwise, we increase k.
v(Γ(Y0,1,··· ,2k)) satisfies σ

2
v(Γ(Y0,1,··· ,2k)) =

(Γ(Y0,1,··· ,2k)TΓ(Y0,1,··· ,2k))v(Γ(Y0,1,··· ,2k)), we can
then apply Algorithm 2 to obtain Γ(Ŷ0,1,··· ,2k);
Step 3: After obtaining Γ(Ŷ0,1,··· ,2k), we can follow Algo-
rithm 1 to compute future estimated output ŷK and approx-
imate the consensus signal as φK ≈ ŷK .

gorithm at any even discrete-time step 2k (for the purpose



of square Hankel matrix), and get an estimation of future
outputs. Ongoing research lies in a more detailed analysis of
Algorithm 3.

Remark 8: Algorithm 1 can be viewed as a special case
of Algorithm 3 if we let � = 0.

VI. CONCLUSION AND FUTURE WORK

Under the assumption that the dynamic consensus of a
group of agents is reached, this paper proposes algorithms to
compute the asymptotical consensus signal using the minimal
number of observations of an arbitrarily chosen node in a
network.

Ongoing research is extending the model (3) so as to
encompass more complex situations, e.g., time-delay in the
model, noise/quantisation error in the communication links,
packet drop in the observations. Broadly speaking, towards
improving the performance of existed results in decentralised
estimation and fusion in a network, the next step is to embed
the above algorithm to improve the performance in the design
of distributed Kalman consensus filter [13], [32], [33].
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