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Resource Competition as a Source of Non-Minimum Phase Behavior in
Transcription-Translation Systems
Enoch Yeung, Jongmin Kim, Richard M. Murray

Abstract— In this paper, we explore how resource limitations

can lead to coupling interactions between orthogonal com-

ponents in a transcription-translation system and the effect

those interactions have on its dynamical behavior. To illustrate

these ideas, we present a motivating example featuring a

classical network motif: the signal cascade. We show that

through coupling interactions arising from competition for

limited resources, the system exhibits a non-minimum phase

step response. These observations lead us to identify a key

network motif with the potential to introduce right half plane

zeros into the system transfer function. We characterize the

parametric conditions under which the network motif produces

a non-minimum phase transfer function and illustrate with

two examples how resource limitations can 1) introduce the

network motif through these coupling interactions, 2) satisfy

the parametric conditions sufficient to produce a right half

plane zero.

I. INTRODUCTION

One of the primary goals of synthetic biology is to
manipulate and synthesize novel biochemical devices to
achieve an objective. For in vivo applications, this often
means exploiting the resources available in a host organism.
For example, the authors in [1] combine the technology of
combinatorial promoters with the native transcription and
translation machinery in E. coli to achieve robust oscillation.
In [2], the authors took advantage of native protein folding
machinery and plasmid replication proteins to monitor a low
copy number oscillator using GFP expressed on a high copy
number plasmid — by so doing, they were able to determine
that low copy number gene expression was stochastic. More
recently, the authors in [3] take advantage of the clustered
regularly interspaced short palindromic repeats (CRISPR)
pathway and endoribonucleases to achieve polycistronic tran-
scriptional and translational expression. In each scenario,
these synthetic technologies utilize the resources available
in a cell to achieve their objective, whether those resources
are available in abundance or scarcity.

Substantial experimental work has been done experimen-
tally that indicates resources can be scarce in the cell.
In [4], the authors demonstrate that too many LVA-tagged
components in a synthetic circuit causes saturation of ClpXP
degradation enzyme, creating coupling between originally or-
thogonal components. They show these coupling interactions
are strong enough to destroy the robustness of the oscillator
from [1].

On the modeling side, substantial work has been done to
quantify both theoretically and empirically the scarcity of
resources and the impact it can have on synthetic biocircuit

dynamics. The scarcity of resources often leads to unin-
tentional coupling, referred to as retroactivity [5], crosstalk
[6], loading effects [7], etc. Strategies for attenuating this
crosstalk have been proposed in [8], [5], and [6]. There
is ongoing work about how to scale these strategies for
larger systems, where multiple components may be sub-
ject to retroactivity and there is a limit to the number
of heterogenous control strategies that are simultaneously
implementable in the system.

Our goal in this paper is complementary to the work in
[8], [5], [7]: we seek to understand the effects of resource
crosstalk on synthetic circuit performance, specifically the
effect that resource crosstalk can have in producing right
half plane zeros in the local dynamics of a transcription-
translation system about an equilibrium point. A right half
plane zero is viewed as a source of fundamental limitations
on closed loop performance [9]. Thus, it is important to
understand the conditions under which right half plane zeros
can arise from resource limitations, and the fundamental
limits they impose on synthetic biocircuit performance and
naturally occurring regulatory circuits. In addition, our work
should be viewed as complementary to the analysis on
glycolysis systems, as it considers yet another scenario
where right half plane zeros play a role in limiting system
performance in biological systems [10].

We organize our paper as follows: in Section II we develop
a motivating example system to illustrate how crosstalk inter-
actions can lead to a non-minimum phase transfer function.
In Section III we show that a simple network motif plays
the primary role in introducing RHP zeros — we present
both a motivating example and a generalizing result that
characterizes the parametric and functional conditions under
which right half plane zeros exist. Next, in Section IV, we
apply the results of Section III to identify a general class
of transcription-translation systems that have a right half
plane zero under certain parametric conditions. Finally, in
Section V we show how degradation and ribosomal loading
in certain types of synthetic biocircuits can have the potential
to introduce a right half plane zero and adversely affect the
master stress response of a host E. coli cell.

II. MOTIVATION - RESOURCE LIMITATIONS IN A SIGNAL
CASCADE

Whether a synthetic biocircuit is implemented in vivo or in
vitro, if it utilizes transcriptional or translational machinery,
e.g. NTP, ATP, polymerases, �-factors, ribosomes, or de-
grades using shared degradation enzymes, e.g. ribonucleases
or proteases, then it has the potential to saturate or overload
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Fig. 1. (Left) An illustration of the signal cascade system (1). The input
u upregulates xI , which subsequently represses expression of the output
gene’s mRNA mO . (Right) The step response of the Michaelis-Menten
crosstalk-free signal cascade system (1). Parameter values for the simulation
were RI = RO = 1.51 nM/s, DI = DO = 2 nM/s, kM,I = 20 nM,
kM,O = 40 nM , M,I = 3.1 nM, M,O = 2.9 nM, ↵I = .002 nM/s,
↵O = .001 nM/s, � = 0.005/s, kIU = 10�7 /s and kOI = 625⇥ 10�9

/s. The system’s transfer function is minimum phase, since it has three poles
in the left half plane of C and no zeros.

these resource molecules and interfere with other processes
in the system. These saturation effects can lead to sequestra-
tion of enzymes from critical processes that would otherwise
function normally. These sequestration effects are the basis of
resource mediated-crosstalk interactions in a system. When
these crosstalk interactions are substantial, they can lead to
unwanted coupling between otherwise orthogonal processes.
It is when that coupling augment the existing network of
interactions to form a specific type of network motif that right
half plane zeros can arise. To gain intuition let us consider
an example system that uses a ubiquitous network motif: the
signal cascade.

Let xO and xI be two proteins in a signal cascade
network translated from mRNA molecules mO and mI

respectively. Let u be an input (e.g. an inducer or allosteric
activator) that activates the cascade via xI . Suppose that xI

represses expression of mRNA transcript mO. If expressed,
mO translates to xO as the final output protein of the cascade.
We suppose that the production and degradation of xO and
xI can be described as Michaelis-Menten functions (without
competitive effects). A schematic illustrating the cascade is
shown in Figure 1. We write the model for this system as
follows:

ṁI = ↵I � �mI

ẋI = RI

mI

kM,I

1 +

mI

kM,I

�DI

xI

M,I

1 +

xI

M,I

+ kIUu

ṁO = ↵O � kOIxI � �mO

ẋO = RO

mO

kM,O

1 +

mO

kM,O

�DO

xO

M,O

1 +

xO

M,O

(1)

y = xO

Here we have attempted to capture a signal cascade in
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Fig. 2. (Top) An illustration of the signal cascade system (2) including
sequestration interactions from degradation enzyme loading. The actual
cascade is the same as before: the input u upregulates xI , which subse-
quently represses expression of the output gene’s mRNA mO . However, xI

sequesters degradation enzyme from xO , which has the effect of increasing
xO concentration. Thus, we draw an effective (positive) arrow from xI to
xO . Similarly, xO sequesters degradation enzyme from xI so we draw a
(positive) arrow from xO to xI . In particular, one of the crosstalk edges
introduces a Type I incoherent feedforward loop into the system (see inset).
(Bottom) The step response of the linearization of system (2) is plotted here.
The transfer function is now non-minimum phase with right half plane zero
z = 0.0012. Parameter values were chosen so that R = RI = RO ,
D = DI = DO and all other parameters are the same as in Figure 1.

the simplest possible terms. In doing so, we acknowledge
that we have omitted the usual Hill functions that describe
transcriptional activation and ignored the intricate processes
behind the production of mRNA, including isomerization,
strand elongation, fall-off, etc.. Our goal is to capture the
essence of the network structure and relationships between
states in this signal cascade, but with minimal complexity
so that when we add modeling terms to describe resource
competition, the introduction of a right half plane zero will
be transparent. After linearizing, we compute the transfer
function as

G(s) =

�
RO

kM,O⇣
1+

mO,e
kM,O

⌘2 kOIkIU

(s+ �)

✓
s�

�DI
M,I

(1+
xI,e
M,I

)2

◆✓
s+

DO
M,O

(1+
xO,e
M,O

)2

◆ .

Clearly, G(s) has no right half plane zeros, so the system is
minimum phase. The step response to a step input is plotted
in Figure 1. Now consider a model that incorporates the
effects of substrates competing for the same resources. In
particular, we will suppose that mI and mO compete for the
same ribosomes R to translate xI and xO respectively and
that xO and xI compete for the same degradation enzymes
D. We write it as follows.
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ṁI = ↵I � �mI

ẋI =

R mI

kM,I

1 +

mI

kM,I
+

mO

kM,O

�
D xI

M,I

1 +

xI

M,I
+

xO

M,O

+ kIUu

ṁO = ↵O � kOIxI � �mO

ẋO =

R mO

kM,O

1 +

mO

kM,O
+

mI

kM,I

�
D xO

M,O

1 +

xO

M,O
+

xI

M,I

(2)

y = xO

and the linearized system is of the form
2

664

�� 0 0 0

a21 a22 a23 a24
0 �kOI �� 0

a41 a42 a43 a44

3

775 , (3)

where

a21 =

R
kM,I

(1 +

mO,e

kM,O
)

(1 +

mI,e

KM,I
+

mO,e

KM,O
)

2
, a41 =

� R
KM,I

(

mO,e

KM,O
)

(1 +

mI,e

kM,I
+

mO,e

kM,O
)

2

a22 =

�D
M,I

(1 +

xO,e

M,O
)

(1 +

xI,e

M,I
+

xO,e

M,O
)

2
, a42 =

D
M,I

xO,e

M,O

(1 +

xI,e

M,I
+

xO,e

M,O
)

2

a23 =

� R
kM,O

(

mI,e

kM,I
)

(1 +

mI,e

kM,I
+

mO,e

kM,O
)

2
, a43 =

R
kM,O

(1 +

mI,e

kM,I
)

(1 +

mI,e

kM,I
+

mO,e

kM,O
)

2

a24 =

D
M,O

xI,e

M,I

(1 +

xI,e

M,I
+

xO,e

M,O
)

2
, a44 =

�D
M,O

(1 +

xI,e

M,I
)

(1 +

xI,e

M,I
+

xO,e

M,O
)

2
.

(4)

and B = kIUe2 and C = e4T , where ei denotes the ith

standard basis vector. We then have

G(s) =
(a42kIU )s� a43kOIkIU + a42�kIU

D(s)

with characteristic polynomial D(s) = s3 � (a22 + a44 �
�)s2 � (a24a42 � a22a44 + (a22 + a44)� � a23kOI)s +

a22a44� � a22a42� � a23a43kOI + a24a43kOI . With the
appropriate constraints on the balance between degradation
and production, the poles will lie in the left half plane.
However, notice that G(s) has a zero at

z =

a43kOI

a42
� �, (5)

and since � > 0, the zero is in the right half plane if
the ratio (a43kOI)/a42 is sufficiently large. The coefficient
a42 describes how xI impacts xO via indirect competition
for the limited degradation enzyme. As the amount of xI

at equilibrium increases, a42 grows smaller and less xO is
degraded, since the degradation enzymes become more likely
to be bound to xI substrate. However, through the signal
cascade, xI inhibits xO with effective gain a43kOI . As the
amount of xI at equilibrium increases, a42 can grow small
enough so that a43kOI/a42 approaches � from the right hand
side, resulting in a small (slow) right half plane zero which
place stronger constraints on the controller. Figure 2 shows
the step response for system (2) with a particularly slow right
half plane zero.

Notice that if the signal cascade was designed so that xI

activated xO, then the term �kOI would be replaced with
kOI and the zero would be

z = �(

a43kOI

a42
+ �) < 0. (6)

Thus, it appears that the incoherence, or opposing dynam-
ics of 1) xI repressing xO and 2) xI “promoting” the abun-
dance of xO by saturating degradation enzyme, is necessary
to produce a right half plane zero. If the signal cascade
is designed so that xI activates xO, then the incoherent
feedforward loop becomes a coherent feedforward loop and
the right half plane zero disappears. It is the incoherent
feedforward loop that makes G(s) non-minimum phase; thus
the next section focuses on characterizing how and when
incoherent feedforward loops produce right half plane zeros
in G(s).

III. ANALYSIS OF THE INCOHERENT FEEDFORWARD
LOOP NETWORK MOTIF

In this section, we characterize how RHP zeros arise
in incoherent feedforward loops. To acquire intuition, we
first pose a simple linear two state model of the incoherent
feedforward loop and derive the transfer function for the
system. We then show that the transfer function for this
incoherent feedforward loop network has a RHP zero and
derive the parametric conditions which are sufficient to
produce a RHP zero. Next, we generalize the result to single-
input single-output (SISO) systems with an arbitrary number
of states and show that under certain conditions, incoherence
results in a RHP zero. We then conclude this section with
an example illustrating the theorem. Consider the following
linear two state model for a feedforward loop:

ẋI = ��IxI + kIUu (7)
ẋO = ��OxO + kOIxI + kOUu

y = xO

The transfer function for this system is

G(s) =
kOUs+ �IkOU + kOIkIU

(s+ �I)(s+ �O)

and has a zero at

z = �
✓
kOIkIU
kOU

+ �I

◆
.

Notice the similarity between z here and the zero in equa-
tion (6). The feedforward loop is coherent (incoherent)
whenever the sign of kOIkIU is the same as (opposite of)
the sign of kOU . This condition succinctly characterizes all
four types of incoherent feedforward loops and all four types
of coherent feedforward loops. In the nonlinear setting, such
a succinct characterization may be hard to find, but as our
analysis pertains to transfer functions, this condition will
suffice for determining if a feedforward loop is incoherent
or coherent.

Since �I represents a degradation rate for xI , then �I > 0

and the potential for z > 0 exists only when
kOIkIU
kOU

< 0
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and �I small enough. Notice that if we separate the B matrix
as

B = BI +BD =


kIU
0

�
+


0

kOU

�

we can decompose the transfer function G(s) as

G(s) ⌘ GI(s) +GD(s)

⌘ C(sI �A)

�1BI + C(sI �A)

�1BD

=

kOIkIU
(s+ �I)(s+ �O)

+

kOU

(s+ �O)
,

where GI(s) represents the transfer function describing dy-
namics of the feedforward loop from U to the output XO that
requires the intermediate state I and GD(s) is the transfer
function that describes the dynamics of the feedforward loop
that go directly from U to XO.

Viewed this way, we see that the feedforward loop transfer
function G(s) has a right half plane zero when the gain of
GI(s) has opposite sign of the gain of GD(s), i.e. the two
modes are incoherent, and the gain of GI(s) is sufficiently
larger than the gain of GD(s). The two transfer functions
capture the dynamics of the two pathways for controlling
XO. When those pathways are incoherent and the gain of the
pathway with an intermediate state (i.e. the slower pathway)
is sufficiently large, then the step response G(s) is temporar-
ily dominated by GD(s) since GI(s) must integrate one state
before the signal propagates to xO. The result is a transient
consistent with the sign of the gain of GD(s). However,
in the long run, GI(s) dominates the dynamics of G(s)
since the gain of GI(s) is larger, resulting in convergence
to steady state in a direction opposite the initial transient
driven by GD(s). These dynamics are a direct consequence
of the structure of the incoherent feedforward loop. The
incoherent feedforward loop thus yields structural intuition
into the characteristic inverse step response observed for a
non-minimum phase SISO transfer function with a single
RHP zero.

In general, biological systems possess many states and
potentially many feedforward loops embedded in a sin-
gle network. Moreover, the location of the input and the
placement of the reporter molecule, i.e. the output of the
system, play a key role in determining if a feedforward
loop even exists between the input and the output. This is
consistent with classical examples of non-minimum phase
systems; sensor placement relative to actuator location can
make all the difference in eliminating a right half plane zero.
[9]. If a feedforward loop exists, there may be several and
in particular, the sequestration effects of resource loading
(e.g. ribosomes, polymerases, transcription factors, ribonu-
cleases, proteases, shared metabolic enzymes) may result in
additional feedforward loops that were not included in the
designed or natural system. If multiple feedforward loops
are present, then it is critical to determine what the overall
dominant or ‘net’ feedforward loop is, and whether it is
incoherent or coherent. Typically, the model for a multi-state
transcription-translation system, when considering the local
dynamics about an equilibrium point, can be approximated
with a linear time-invariant state space realization.

However, it is not easy to determine the existence of a
incoherent feedforward loop at first glance from the state-
space realization. Often, it is easier to consider a candidate
intermediate node xI and the output node xO in the network
and ask if there is an effective incoherent feedforward loop
in the system. In this scenario, it would be useful to find a
simpler representation of system structure that embeds the
dynamics of unnecessary intermediate states as open loop
transfer functions and describes the overall effect of u on xI ,
xI on xO, and u on xO. The dynamical structure function
[11] is a convenient representation of structure that has this
property. We develop the following lemma, based on the
techniques in [11].

Lemma 1: Consider the system
ż = Az +Bu (8)
y =

⇥
c 0

⇤
z (9)

where z =

⇥
xO xI xT

⇤T
, xO(t), xI(t) 2 R for all t,

x(t) 2 Rn�2 for all t, A 2 Rn⇥n, B 2 Rn, c 2 R, C 2
R1⇥n. Then the system can be expressed as

sXO(s)
sXI(s)

�
=


WOO(s) WOI(s)
WIO(s) WII(s)

� 
XO(s)
XI(s)

�
+


VO(s)
VI(s)

�
U(s)

(10)
where WOI(s) is a transfer function describing the open loop
dynamics from XI(s) to XO(s) involving only the states in
X(s) (excluding XI(s) and XO(s)), WOO(s) is a transfer
function describing self-regulatory open loop dynamics of
XO that involve only states in X(s), VO(s) is the open loop
transfer function from U to XO describing dynamics that
involve only states in X(s), etc.

Proof: Observing the partitioning in the state vector
z =

⇥
xO xI xT

⇤T , we can write state space equation
matrices in block form as:

2

4
˙xO

ẋI

ẋ

3

5
=

2

4
A11 A12 A13

A21 A22 A23

A31 A32 A33

3

5

2

4
xO

xI

x

3

5
+

2

4
B1

B2

B3

3

5u (11)

y = cxO +

⇥
0

⇤
x = cxO

Assuming X(0) = 0, we take Laplace transforms and solve
for X(s) in the third row to obtain

X(s) = (sI �A33)
�1

✓⇥
A31 A32

⇤ XO(s)
XI(s)

�
+B3U(s)

◆
,

and noting that (sI � A33)
�1 exists almost everywhere on

C, substituting this expression for X(S) results in

sXO(s)
sXI(s)

�
=


WOO(s) WOI(s)
WIO(s) WII(s)

� 
XO(s)
XI(s)

�
+


VO(s)
VI(s)

�
U(s),

where

WOO(s) = A11 +A13(sI �A33)
�1A31,

WOI(s) = A12 +A13(sI �A33)
�1A32,

WIO(s) = A21 +A23(sI �A33)
�1A31,

WII(s) = A22 +A23(sI �A33)
�1A32, (12)

VO(s) = B1 +A13(sI �A33)
�1B3,

VI(s) = B2 +A23(sI �A33)
�1B3.
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This lemma shows that an arbitrary state space realization
can be used to compute the open loop (proper) transfer
functions describing the relationships between the output
state xO, intermediate xI and input u. Notice that the form of
equation (10) resembles the form of system (7); immediately,
the question arises if the findings in the prequel generalize
to transfer functions. The next result answers this question:

Theorem 1: Suppose the system (8) is asymptotically sta-
ble. Suppose, for all x 2 R�0 we have that
✓
WOI(x)VI(x)

VO(x)

◆
 0 and WII(x) �

✓
WOI(x)VI(x)

VO(x)

◆

for all x 2 R�0 ⇢ C�0. Further, if

WII(s)�
WOI(s)VI(s)

VO(s)
= k(s+D) + fp(s),

where 0  k < 1, D 2 R and fp(s) is a proper transfer
function, then the transfer function of system (8) has at least
one zero z in the closed right half plane of C. Moreover, z
is a nonnegative real number.

Proof: Let the set of nonnegative real numbers be
denoted as X. Define f(s) = WII(s) � WOI(s)VI(s)

VO(s) . After
some algebra, the transfer function of the system can written
as

G(s) =
s� f(s)

((s�WOO(s))(s�WII(s))�WOIWIO)
.

To show G(s) has at least one zero in X , it suffices to show
that x� f(x) has a root z 2 X. Since WOI(x)VI(x)

VO(x)  0 and
WII(x) � WOI(x)VI(x)

VO(x) , then f(x) � 0 for all x 2 X. Since
the system is asymptotically stable, this implies that f(x) has
no right half plane poles in X . Define p(x) = x � f(x) =
x�(k(x+D)+fp(x)); clearly p(x) is continuous since f(x)
has no poles in X . Notice that p(0) = �f(0). If f(0) = 0,
then we are done. If f(0) 6= 0, then f(0) > 0 which implies
p(0) < 0. Next, write p(x) = (1� k)x� kD� fp(x). Since
fp(x) is proper, it is globally bounded on X. Denote

M = max{sup
x2X

fp(x), |kD|}.

Then if x > (M +kD)/(1�k), p(x) > 0 and by continuity
of p(x) and the intermediate value theorem, p(z) = 0 for
some z 2 X.

Remark 1: The constraint that f(x) be at least relative
degree �1 can be interpreted as a constraint on the structure
of the system (8). Since WII(s) is either proper or strictly
proper, the improperness of f(x) can only arise from the
ratio WOI(x)VI(x)

VO(x) being improper. Since WOI(x) and VI(x)
are proper, again, the only way that the ratio is improper is
if VO(x) is strictly proper. When VO(x) has relative degree
0, then the f(x) has relative degree 0, when VO(x) has
relative degree one, then f(x) has relative degree �1, and so
forth. Thus, the constraint on VO(x) is that it possesses direct
feedthrough from u to xO (relative degree 0), or that there
is effectively at most one integrator from u to xO (relative
degree 1).

Remark 2: The condition that f(x) � 0 for all x 2 X
can be viewed as a constraint on the zeros of f(x). Since

the poles of f(x) all lie in the open left half plane, f(x) can
never have a negative denominator. Therefore, to ensure that
f(x) > 0 for all x 2 X, any right half plane zero in f(x)
must have even algebraic multiplicity.

IV. INPUT-COUPLED SYSTEMS

We now consider a general class of transcriptional and
translational systems, comprised of at least two orthogonal
genes. We suppose these two genes are activated by a small
input molecule u1 and thus refer to this type of system as
an input-coupled system. The model is written as

ṁ1 = �1 � �1m1 +Km1,uu1

ṁ2 = �2 � �2m2 +Km2,uu1

ṗ1 = Rtot
m1

KM,1

1 +
Pn

j=1
mj

KM,j

� �p1

... =
...

ṗn = Rtot
mn

KM,n

1 +
Pn

j=1
mj

KM,j

� �pn

ṁ3 = �3 � �3m3

... =
...

ṁn = �n � �nmn.

Let us examine what happens if we introduce only ribosomal
loading on translation of mRNA into protein. Here we have
assumed that binding of the ribosomal machinery to the
ribosome binding site of an mRNA molecule happens much
faster and that the ribosomal translational complex satisfies
a Michaelis-Menten assumption, i.e. it reaches steady state
much faster than m1, ..mn, p1, ..., pn.

To investigate the existence of a right half plane zero, we
calculate the Jacobian in equation (13) for some nominal
equilibrium point xe, and define the block elements of the
the Jacobian J as

J ⌘


A11(xe) A12(xe)

A21(xe) A22(xe)

�

with

B =

⇥
Km1,u Km2,u 0 . . . 0

⇤T

and

C =

⇥
0 0 1 0 . . . 0

⇤
.

Notice that the signed Boolean structure of A11 is identical
to the signed Boolean structure of the A matrix in the IFFL
system (16). Following the pattern discovered in the above
example, if we suppose

mj,e

KM,j⇣
m2,e

KM,2

⌘2 = O(✏) for j 6= 2 ; n = O(1) (14)

then a direct application of the Woodbury matrix identity,
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(13)

allows us to write the transfer function as G(s)

= C

 
sI �A11(xe) �A12(xe)
�A21(xe) sI �A22(xe)

��1
!
B (15)

= C

 �
sI �A11 �A12(sI �A22)

�1A21

��1
?

? ?

�
B

=

2

4
0
0
1

3

5
T

�
(sI �A11)�A12(sI �A22)

�1A21

��1

2

4
Km1,u

Km2,u

0

3

5

and since 1 >> ✏, if we pull out (m2/KM,2)
2 from the

denominator in A12, A21, and A22 it is easy to see that A12

is O(✏) and A21, A22 is at most O(1), thus implying that
�
(sI �A11)�A12(sI �A22)

�1A21

��1 u (sI �A11)
�1

.

Next, note that the signed Boolean structure of (A11, B1) is
of the form

0

@

2

4
�↵m1 0 0

0 �↵m2 0

Kp1,m1 �Kp1,m2 �↵p1

3

5 ,

2

4
Km1u

Km2u

0

3

5

1

A (16)

Permuting the states, so that p1 is xO and m2 is xI and
(u � ue) is u, and applying the equations in (12) we get
WII(s) = �↵m2 , VI(s) = Km2u,WOO(s) = �↵p,1 and

WOI(s) = �Kp1,m2

VO(s) =

Kp1,m1Km1u

s+ ↵m1

and f(x) = �↵m2 �
⇣
�Kp1,m2Km2,u

Kp1,m1Km1,u
(s+ ↵m1)

⌘
In this

case, notice that the incoherence in Kp1,m2 and Kp1,m1

determines the sign of WOI(x)VI(x)
VO(x)  0 Also, f(x) has

relative degree �1 and the condition that 0  K < 1 implies
that

Kp1,m2Km2,u < Kp1,m1Km1,u (17)

and if ✓
Kp1,m2Km2,u

Kp1,m1Km1,u
(↵m1)

◆
> ↵m2 (18)

then f(x) � 0 for all nonnegative real x and by Theorem 1
the system will have a right half plane zero.

In this particular class of systems, we assume degradation
is not substantially saturated, i.e. we can approximate each
degradation rate as linear. The reader will find that if an
input-coupled system is posed with degradation crosstalk
as the sole source of crosstalk, the system will have the
potential to possess a right half plane zero only if 1) there
is a down-regulation of one gene by another, and 2) a third
gene dominates use of the degradation enzymes, so much
that it sequesters the enzymes from the first or second. The
key is the introduction of an incoherent feedforward loop
in the system. When there are multiple sources of resource-
mediated crosstalk, again, multiple feedforward loops will
be present and a right half plane zero will be present if
the dominant feedforward loop is an incoherent feedforward
loop.

V. CLPXP LOADING AND IMPLICATIONS ON THE �38

(RPOS) REGULATED STRESS RESPONSE

In this section we show how loading effects introduced
by two competing pathways: 1) a pathway that is introduced
synthetically with strong production gain and degradation
gain and 2) the stress response pathway regulated by the
master stress response regulator �38 (RpoS) results in an
incoherent feedforward loop with the potential for a right half
plane zero. Specifically, we consider the effects of adding a
high copy number gene that is engineered to have an LVA
tag [4], a standard modification tag added to proteins to tune
degradation rates. However, since ClpXP degrades �38 and
any LVA-tagged molecule, when LVA-tagged proteins are
produced in high quantity by a high copy number gene,
the result is a sudden increase in ClpXP degradable proteins
which can lead to ClpXP saturation [13]. ClpXP regulates
�38 concentration, so if enough ClpXP is sequestered, the
result is that the effective lifetime of a �38 molecule is
extended. Furthermore, �38 is the master stress response
(up)regulator, an increase in its lifetime results in activation
of critical stress response genes. These stress response genes
can have adverse effects on cell metabolism, unnecessarily
tax transcriptional and translational machinery (e.g. HPI and
HPII catalases [14] which convert toxic hydrogen peroxide
molecules into hydrogen and water), or in the worst case,
induce cell lysis (e.g. the protein entericidin which induces
cell lysis [15]).
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Fig. 3. A diagram illustrating the interactions between chemical species in
system (19). A synthetic gene is induced by a small molecule u, resulting
in expression of mRNA molecule mS . mS translates into LVA-tagged
protein pS -LV A. The mS mRNA molecules sequester ribosomes from
m� , the mRNA transcript for �

38 — this creates a crosstalk interaction
where mS effectively down regulates �

38 expression (similarly, m� down
regulates pS expression, but only weakly when the synthetic gene is at
high copy number). The pS protein sequesters ClpXP from �

38, — this
creates a crosstalk interaction where pS in effect extends the lifetime of
�

38, which we indicate with an up-regulation arrow from pS to �

38
. The

inset highlights the Type III incoherent feedforward loop [12] is introduced
via ribosomal and ClpXP sequestration interactions. The relevant crosstalk
interaction arrows in the IFFL are drawn as dotted and a darker color than
the other crosstalk interactions.

While there are certain scenarios where inducing cell death
may be the goal of a synthetic circuit, it is often the goal
to engineer biocircuits that do not adversely impact the
health of its host or minimally perturb the activity of host
housekeeping genes. Therefore, it is important to understand
whether such a synthetic circuit can adversely affect the cell’s
ability to regulate its stress response. A schematic illustrating
the interactions of the circuit, including the indirect crosstalk
interactions (dotted) is shown in Figure 3. We model the
system as follows:

ṁS = P totkpcat

N DS

KM,D

1 +N DS

KM,D
+

D�

KM,�D

� �Sms + ksuu,

ṁ� = P totkpcat

D�

KM,�D

1 +N DS

KM,D
+

D�

KM,�D

� ��m�, (19)

ṗS = kcat
Rtot ms

KM,s

1 +

ms

KM,S
+

m�

KM,�

� cat
C tot PS

M,S

1 +

Ps

M,S
+

�38

M,�

,

˙�38
= kcat

Rtot m�

KM,�

1 +

m�

KM,�
+

mS

KM,S

� cat
C tot �38

M,�

1 +

Ps

M,S
+

�38

M,�

,

ẋstress = ↵
�38

kM + �38
� �xxstress .

The Jacobian of the system has the following form:
2

66664

�a11 0 0 0 0

0 �a22 0 0 0

a31 �a32 �a33 a34 0

�a41 a42 a43 �a44 0

0 0 0 a54 �a55

3

77775
,

with B =

⇥
ksu 0 0 0 0

⇤T , where aij are computed
in the usual fashion. Notice, the definition of the transfer
function depends on which state we choose as our output.
Since we are considering the copy number of our circuit
to be particularly large, e.g. if the circuit was implemented
on a high copy plasmid, then our concern is how drawing
from the resources of the cell affects a critical survival
mechanism — the stress response pathway. Thus, we are
interested in how inducing our synthetic pathway with u
affects production of stress response protein xstress. Here
xstress can be interpreted as any of the proteins typically
(positively) regulated by �38, e.g. Thus, if u renders the cell
unable to respond to stress, or worse yet, indirectly activates
the stress response, this could lead to poor performance of
the synthetic circuit or in the worst case, destruction of the
host via cell lysis.

Computing the transfer function gives

G(s) =
(�a41a54ksu)

⇣
s� a43a31

a41
+ a33

⌘

D(s)

where D(s) = (s + a55)(a33a44 � a34a43 + a33s + a44s +
s2)(s+ a11) and the zero can be written simply as

z =

a54a43a31ksu
a54a41ksu

� a33 =

kcatC
tot
⇣

�38
e

M,�

KM,�

me
�

� 1

⌘

⇣
1 +

pe
s

M,s
+

�38
e

M,�

⌘2

which is positive if KM,�

me
�

� M,�

�38
e

> 0. Examining the first
expression for z, we see that the system has a right half
plane zero if the effective gain of “up-regulation” of �38 via
Clp-XP saturation (a43a31ksu), normalized by the effective
gain of “down-regulation” of �38 via ribosomal loading
(a41ksu) is sufficiently large, specifically to exceed the rate
of degradation of pS (a33). When overall up-regulation of
�38 only slightly exceeds degradation of �38, the result is a
particularly slow right half plane zero.

Copy number of the synthetic circuit also plays a role
in determine the size of z. When z is positive and small,
increasing the copy number N in system (19) increases me

s

which results in an increase in pes. Notice that increasing pes
also results in a decrease in �38

e . If z > 0, then increasing
copy number N drives z towards 0, resulting in a slower
settling time and larger amplitude of the inverse transient. We
consider the average copy numbers N of 4 standard vectors
that are used to carry synthetic circuits in E. coli and plot
the step response as a function of N (Figure 4). If we apply
the Bode integral formula for the complementary sensitivity
function T (s), we obtain the following lower bound:

Z 1

0
log |T (j!)|d( 1

!
) �

⇣
1 +

pe
s

M,s
+

�38
e

M,�

⌘2

kcatC tot
⇣

�38
e

M,�

KM,�

me
�

� 1

⌘

Since the error in tracking is E(s) = S(s)(R(s)�D(s)) +
T (s)M(s), then T (s) is a measure of how uncertainty in
measurements, or measurement noise, is amplified to error.
However, the issue is not about control performance or
trajectory tracking (though that may be the case in a synthetic
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Fig. 4. Normalized step response curves of stress response gene xstress

for the nonlinear system (19) plotted as a function of time and the synthetic
gene copy number N . We selected average values representative of low,
medium and high copy numbers of plasmid (displayed with a standard ORI
of that copy number). These curves were generated using the following
parameters: P tot = 200 nM, Rtot = 80 nM, C tot = 75 nM, Ds = D� = 1
nM, kpcat = .009 /s, kcat = cat = .0002 /s, KM,S = KM,� = KM,D =
KM,�D

= 500 nM , M,S = M,� = 3 nM, �S = �� = �x = 5⇥10�3

/s, ↵ = 10 nM/s, kM = 30 nM, ksu = .0001 /s. A step of 1 nM was
used. (Inset) A magnified view of the trough in the inverse transient of the
step response.

system using in silico control approaches [16]). The relevant
goal is to implement synthetic pathways in biology that
do not jeopardize the health of the cell or unintentionally
activate unnecessary pathways.

However, when we use ClpXP to mediate degradation in
our synthetic circuit, a right half plane zero is introduced
into the system, resulting in significant coupling to the stress
response genes of the cell. Further, induction of our synthetic
circuit results in 1) a transient (inverse) dynamic wherein
the cell loses its ability to respond to stress, 2) the eventual
up-regulation of stress response genes whether or not there
actually is environmental stress. Both of these outcomes can
be deleterious to the cell.

In presenting this example, our purpose is to simply in-
crease understanding of the potentially adverse consequences
of introducing LVA-tagged molecules on a high copy number
biocircuit. We do not claim that right half plane zeros will
always exist for such biocircuits, as the existence of the right
half plane zero is strongly dependent on the equilibrium val-
ues of the chemical species involved, the Michaelis-Menten
constants, and the amount of ribosomes, polymerases, and
ClpXP in each cell. Thus, our results should be viewed as
an additional consideration when using ClpXP to control
degradation rates.

VI. CONCLUSION

In this work we reviewed the principle of resource
loading and examined its effects on a signal cascade that
implemented repression. We showed that saturation and
competition of degradation enzymes produces unintended
crosstalk interactions. Those crosstalk interactions introduced
an incoherent feedforward loop, and under certain parametric
conditions, a right half plane zero in the local dynamics of an
equilibrium point. We analyzed the incoherent feedforward
loop using a simple example and derived sufficient conditions

for a multi-dimensional SISO system to have an incoherent
feedforward loop and additionally, a right half plane zero.
We then applied this result to derive parametric conditions
under which a class of transcription-translation systems and
a synthetic system leveraging LVA degradation technology
would have a right half plane zero. We stress that cells
always deal with finite resources [17] and as shown in [4],
expressing just two genes was already enough to completely
saturate ClpXp using typical promoters (pTet and pAra).
It is thus likely that for any reasonably sized circuit, that
the resources for either production or degradation machinery
will be saturated. Therefore, the issue of of characterizing
how right half plane zeros arise from resource limitations
is an important area to explore for understanding the limits
of controllability in synthetic (and even naturally occurring)
circuits.
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