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Quantifying Crosstalk in Biochemical Systems
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Abstract— Recent work has introduced biocircuit architec-

tures that exhibit robust oscillatory behavior in organisms rang-

ing from cyanobacteria to mammals. Complementary research

in synthetic biology has introduced oscillators in vivo and in

vitro suggesting that robust oscillation can be recapitulated

using a small number of biochemical components. In this work,

we introduce signaling crosstalk in biocircuits as a consequence

of enzyme-mediated biochemical reactions. As a motivating

example, we consider an in vitro oscillator with two types

of crosstalk: crosstalk in production and degradation of RNA

signals. We then pose a framework for quantifying crosstalk and

use it to derive several dynamical constraints and suggest design

techniques for ameliorating crosstalk in in vitro biochemical

systems. We demonstrate that the effects of crosstalk can be

attenuated through the effective tuning of two key parameters

in order to recover desired system dynamics. As an example,

we show that by changing the balance between production and

degradation crosstalk, we can tune a system to be stable or

exhibit oscillatory behavior.

I. INTRODUCTION

High-throughput technologies have led to the era of
systems biology as an integrative approach to connect
molecular-level mechanisms to cell-level behavior [1]. While
the systems biology approach generated complex wiring
diagrams for analyzing biological systems on a large scale,
a complementary approach in synthetic biology focused on
creating networks to elucidate design principles to achieve
desired functions [2]. However, it has often been over-
looked that biological systems are under continuous selec-
tion pressure to maximize performance while minimizing
cost, i.e., maintaining only the minimal amount of critical
machinery [3], [4]. Consequently, there exists a potential to
overload important pathways during times of stress and to
place unanticipated burden on central cellular enzymes [5],
[6]. Therefore, it is critical to have a detailed understanding
of the underlying molecular mechanisms that capture the
loading effects on different components — indeed, such
understanding is a necessary first step in further development
of systems and synthetic biology.

A biocircuit, synthetic or natural, can be conceptually
divided into two (intertwined) layers — a layer that con-
stitutes molecular architecture reflecting designed or known
interactions and a layer that consists of uncertain or hidden
interactions, referred to as crosstalk, arising from either back-
ground processes or byproducts of circuit processes. This
crosstalk layer is not easily avoided and often is fundamental
to circuit operation [7], yet only a few studies have examined
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how to overcome crosstalk [8] or to exploit it as a mechanism
for tuning circuit performance [9].

In engineering, crosstalk is traditionally viewed as the
interaction between two signal relays. Old electronic cir-
cuits suffered various problematic effects such as ringing,
crosstalk, and noise. Thus, essentially all modern circuits
must be designed with signal integrity in mind [10]. How-
ever, in biology, crosstalk seems to be a ubiquitous feature
that can take multiple forms, including hidden reactions
[11], non-specific binding [12], waste management [13], and
enzyme loading [5] possibly with different types of impact on
system dynamics. In this work, we consider crosstalk arising
from enzyme loading, i.e., the saturation effects that occur
from substrates competing for the same enzyme.

We organize this paper as follows: In Section II we
consider the simplified oscillator model for a circadian clock
proposed by Barkai and Leibler which is robust to stochastic
noise in simulation studies [14], [15] — unlike other cir-
cadian clock models [16]. We introduce an in vitro model
reconstructing the Barkai-Leibler oscillator and analyze the
impact of the saturation effects of competing substrates for
production and degradation enzymes. We show how these
competitive effects lead to undesired interactions between
system components — a dynamical effect we call crosstalk.
In Section III we introduce the mathematical background
for studying crosstalk in biochemical systems and propose a
measure for quantifying crosstalk between components and
for the system as a whole. Finally, in Section IV we introduce
conceptual approaches towards designing systems that are
robust to crosstalk. We discuss two ways to ameliorate
crosstalk in the context of robust biochemical system design
and illustrate how these techniques can be used to recover
oscillations in the Barkai-Leibler oscillator.

II. MOTIVATING EXAMPLE

A. In Vitro Barkai-Leibler Oscillator
The model for circadian clock proposed by Barkai and

Leibler take the form of Figure 1 inset [14], [15]. It in-
volves two genes, DA and DR, coding for an activator A
and a repressor R, which are transcribed into mRNA and
subsequently translated into protein. The activator A binds
to the promoters for genes DA and DR to increase their
transcription rates, while R acts as the negative element
by sequestering the activator A. It is noteworthy that the
oscillation did not rely on the cooperative binding of A
to the promoters of genes or cooperative binding of R to
A; the activation mechanism was simple binding and the
repression mechanism is a stochiometric sequestering. On
the other hand, a key requirement for oscillation was the
time-scale separation for A and R dynamics — production
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Fig. 1. A schematic diagram of the Barkai-Leibler oscillator (top left)
and the detailed molecular reactions for an in vitro genelet oscillator. There
are two synthetic templates, DA and DR, producing an activator A and
a repressor R using RNAP. The activator A binds to the promoter sites
of the two templates to enhance transcription rates, while the repressor R
sequesters A into a complex C. The RNA signals A, R, and C are degraded
selectively by RNase R, while A bound to DNA templates are degraded by
RNase H. The sequence domains are color-coded to indicate identical or
complementary sequences.

and degradation of A were on a much faster time scale than
those of R.

Here, we propose a model that captures the essential
features of the Barkai-Leibler oscillator in a simplified in
vitro setting (Figure 1). We do so for three reasons: 1) to
introduce a novel synthetic in vitro switch design, 2) to lay
a groundwork for general circuit construction methods, and
3) to propose a model of an in vitro system without crosstalk
and examine the effects of adding crosstalk on the system’s
oscillatory performance. Finally, our results in Section IV
also suggest approaches for tuning crosstalk and thus, actual
experiments to validate model predictions.

The circuit is constructed as follows: the OFF state of
the switch consists of a double-stranded (ds) DNA template
(“D’’) with a partially single-stranded (ss) (and thus incom-
plete) T7 RNA polymerase (RNAP) promoter region. The
switch is turned ON by the binding of ssDNA or ssRNA
activator (“A’’) that completes the RNAP promoter region.
The resulting template (“DA’’) has a nicked promoter but
still transcribes well [13]. (Experimental characterization of
genelets used DNA activator [13]; RNA activator would
likely be less efficient than its DNA counterpart [17].) To
provide a sharp threshold of activation, an inhibitor strand
(ssDNA or ssRNA, “I’’) can bind to a complementary free-
floating activator A, resulting in a functionally inert activator-
inhibitor complex “AI.’’ (this reaction is not explicitly imple-
mented for the circuit presented in this paper.) Using these
design motifs for switches and signals, networks with arbi-
trary connectivity can be constructed modularly, in principle,
as continuous-time analog neural networks [18]. In a typical
reaction network, RNA outputs will be produced by RNAP
from upstream switches using NTP as fuel, and these outputs
will serve as inputs for downstream switches. At the same
time, the degradation of RNA signals by Escherichia coli

ribonuclease H (RNase H) and/or ribonuclease R (RNase R)
removes RNA signal, thereby undoing the regulatory effect
of the RNA signals.

The synthetic in vitro transcriptional circuits (‘genelets’)
have been used to create bistable circuits, oscillators, and
drive other molecular machines using modular architecture
with programmable connectivity [13], [19], [20]. Thus, it
would be possible to experimentally understand and char-
acterize elementary reactions and system dynamics for our
proposed circuit in the near future. A notable difference from
the models of Barkai and Leibler is that, for our proposed
biochemical circuit, the RNA signals act directly as the
activator and repressor of the system, obviating the need
for translation machinery. The deterministic dynamics of the
model is given by the set of reaction rate equations below.

ḊOFF
A = �kONADOFF

A + kOFF DON
A (1)

ḊOFF
R = �kONADOFF

R + kOFF DON
R

Ȧ = kp,ADON
A + ↵kp,ADOFF

A � kONADOFF
A

�kONADOFF
R � kANNAR � �AA

Ṙ = kp,RDON
R + ↵kp,RDOFF

R � kANNAR

+�AC � �RR

Ċ = kANNAR � �AC

where DA and DR are synthetic DNA templates coding RNA
signals A and R, while C is the complex of A and R. The
templates DA and DR have incomplete promoter regions for
RNAP such that the transcription rates are slow. When the
RNA signal A binds and completes the incomplete promoter
region, the transcription rate increases. Therefore, DON

A is
the ON-state switch, i.e., DAA complex, while DOFF

A is
simply DA.

To effectively achieve time-scale separation for the dynam-
ics of A and R, kp,A and �A should be much larger than
kp,R and �R, respectively. To adjust production rates, one
possibility is tuning the catalytic rate of RNAP for templates
by changing the consensus sequence right after the promoter
region; a simpler solution would be using high concentration
of template DA coding for A. To adjust degradation rates, we
can utilize the property of RNase R that can by itself degrade
single-stranded RNAs with extensive secondary structure
provided that a single-stranded 30 overhang more than 4-base
long is present [21]. By incorporating extensive secondary
structures for 30 end of R while leaving 30 end of A structure-
free, we can achieve the desired differential degradation for A
and R. We observed oscillation with experimentally plausible
parameter values (Figure 2).

To gain insight into the essential elements required for
oscillations, we simplified the deterministic rate equations
by making quasi-steady-state assumptions for templates DA,
DR, and activator A. The resulting two-variable system with
the repressor R and the complex C as the two slow variables
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Fig. 2. Dynamics of the synthetic oscillator model. a, b) Time-courses and
phase portrait of the first-order model (1), where kon = 105/M/s, koff =
0.003/s, kANN = 2 ⇥ 105/M/s, Dtot

A = 200 nM , Dtot
R = 100 nM ,

�A = 0.003/s, �R = 10�4/s, kp,A = 0.03/s, kp,R = 0.003/s, ↵ =
0.01. c) Time-courses of the Michaelis–Menten RNAP model (2) assuming
first-order RNase R reactions, where kcat,A,ON = 0.2/s, kcat,R,ON =
0.02/s, kcat,A,OFF = 0.02/s, kcat,R,OFF = 0.002/s, KM,A,ON =
KM,R,ON = 300 nM , KM,A,OFF = KM,R,OFF = 3 µM , Etot =
55 nM . d) Time-courses of the Michaelis–Menten RNAP and RNase R
model (2), where �cat,A = 0.2/s, �M,A = 500 nM , �cat,R = 0.066/s,
�M,R = 5 µM , Etot

d = 15 nM ,

where Dtot
R is the sum of the ON- and OFF-state templates,

and Ã(R) is the quasi-equilibrium value of A by solving
Ȧ = 0. The trajectories of the full model with respect to the
solution Ã(R) = f(R) result in small differences because
the time-scale separation is not perfect. We note that the two-
dimensional model would remain a good approximation of
the full model for parameter choices where the dynamics of
A become faster with respect to the dynamics of R.

We demonstrate the following properties of the simplified
oscillator model:
1) The system is bounded: It follows from (2) that R <

kp,ADtot
A

kANN Ã(R)
, and thus, Ċ < kp,ADtot

A ��AC. Consequently, C

is bounded. Using this upper bound on C value, we conclude
that Ṙ < kp,RDtot

R + kp,ADtot
A � �RR.

R <
kp,RDtot

R + kp,ADtot
A

�R
C <

kp,ADtot
A

�A

2) There is a single equilibrium point: Let

P (Ã) =
↵koff + konÃ(R)

koff + konÃ(R)
,

P (Ã) is a monotonic increasing function of Ã and bounded
by ↵ and 1. Solving Ṙ = 0 results in

C =
kANN Ã(R)R + �RR � kp,RDtot

R P (Ã)

�A
;

solving Ċ = 0 results in C = kANN Ã(R)R
�A

. The two
nullclines coincide when g(R) = �RR�kp,RDtot

R P (Ã) = 0.
We can show that if

kp,aDtot
A > koff (Dtot

A + Dtot
R ), then

@Ã(R)

@R
< 0,

which holds true for the choice of parameters. Since
g(0) < 0, g(kp,RDtot

R

�R
) > 0, and @g(R)

@R = �R �

kp,RDtot
R

@P (Ã)

@Ã

@Ã(R)
@R > 0, we conclude that there is a

unique positive solution for g(R) = 0 .
3) tr(J) determines the existence of a limit cycle: Notice
that det(J) = �A(�R � kp,RDtot

R
@P (Ã)

@Ã

@Ã(R)
@R ) > 0, thus

the sign of tr(J) determines stability of the unique equi-
librium point tr(J) = �kANN (Ã + R @Ã

@R ) � �A � �R +

kp,RDtot
R

@P (Ã)

@Ã

@Ã(R)
@R .

Combining these observations with 1) and 2), we can apply
the Poincare-Bendixson theorem to conclude that system (1)
has a limit cycle whenever tr(J) > 0.

B. In Vitro Barkai-Liebler Oscillator with Crosstalk

We now consider a more realistic model, taking into
account that both the activator and repressor switches use
a common enzyme, RNAP, to transcribe their RNA signals,
while the activator and repressor RNA signals are degraded
by a common enzyme, RNase R. (To simplify presenta-
tion, we do not explicitly model the enzyme reactions of
RNase H.) The limited load capacity of enzymatic processes,
known as Michaelis–Menten kinetics, introduces nonlinear
aspects on the system dynamics such as zero-order ultrasen-
sitivity [21]. Following typical Michaelis–Menten assump-
tion, i.e., low enzyme concentration and quasi–steady-state
approximation for enzyme-substrate complexes, we replace
the first-order reaction rates with enzyme-mediated reactions
with enzyme concentrations (Etot or Etot

d ), catalytic rates
(kcat or cat), and Michaelis constants (KM or M ). The
reaction rate equations for DA and DR are unchanged.

Ȧ =
E

tot
⇣

kcat,A,ON

KM,A,ON
D

ON
A +

kcat,A,OF F

KM,A,OF F
D

OFF
A

⌘

1 +
DON

A
KM,A,ON

+
DOF F

A
KM,A,OF F

+
DON

R
KM,R,ON

+
DOF F

R
KM,R,OF F

�kONADA � kONADR � kANNAR

�E

tot
d

cat,A

M,A
A

1 + A
M,A

+ R
M,R

+ C
M,A

(2)

Ṙ =
E

tot
⇣

kcat,R,ON

KM,R,ON
D

ON
R +

kcat,R,OF F

KM,R,OF F
D

OFF
R

⌘

1 +
DON

A
KM,A,ON

+
DOF F

A
KM,A,OF F

+
DON

R
KM,R,ON

+
DOF F

R
KM,R,OF F

�kANNAR + E

tot
d

cat,A

M,A
C � cat,R

M,R
R

1 + A
M,A

+ R
M,R

+ C
M,A

Ċ = kANNAR � E

tot
d

cat,A

M,A
C

1 + A
M,A

+ R
M,R

+ C
M,A

To compare the above model and the linear model (1)
in a mathematically controlled way [22], we require that
there is no extra degree of freedom for the Michaelis–
Menten enzyme reactions. Thus, we set the production rates
for both first-order model and Michaelis–Menten enzyme
model equivalent at the unique fixed point of the system.
For example, kp,A and ↵ constrain the RNAP parameters as
follows.
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0.01. c) Time-courses of the Michaelis–Menten RNAP model (2) assuming
first-order RNase R reactions, where kcat,A,ON = 0.2/s, kcat,R,ON =
0.02/s, kcat,A,OFF = 0.02/s, kcat,R,OFF = 0.002/s, KM,A,ON =
KM,R,ON = 300 nM , KM,A,OFF = KM,R,OFF = 3 µM , Etot =
55 nM . d) Time-courses of the Michaelis–Menten RNAP and RNase R
model (2), where kd,cat,A = 0.2/s, Kd,M,A = 500 nM , kd,cat,R =
0.066/s, Kd,M,R = 5 µM , Etot

d = 15 nM ,

is written as follows:

Ṙ = kp,RDtot
R

↵koff + konÃ(R)

koff + konÃ(R)

�kANN Ã(R)R + �AC � �RR

Ċ = kANN Ã(R)R � �AC

where Dtot
R is the sum of the ON- and OFF-state templates,

and Ã(R) is the quasi-equilibrium value of A by solving
Ȧ = 0. The trajectories of the full model with respect to the
solution Ã(R) = f(R) result in small differences because
the time-scale separation is not perfect. We note that the two-
dimensional model would remain a good approximation of
the full model for parameter choices where the dynamics of
A become faster with respect to the dynamics of R.

We demonstrate the following properties of the simplified
oscillator model:

1) The system is bounded: We can prove that R <
kp,ADtot

A

kANN Ã(R)
, and thus, Ċ < kp,ADtot

A � �AC. Consequently,
C is bounded. Using this upper bound on C, we conclude
that Ṙ < kp,RDtot

R + kp,ADtot
A � �RR.

R <
kp,RDtot

R + kp,ADtot
A

�R
C <

kp,ADtot
A

�A

2) There is a single equilibrium point: Let

P (Ã) =
↵koff + konÃ(R)

koff + konÃ(R)
,

P (Ã) is a monotonic increasing function of Ã and bounded
by ↵ and 1. Solving Ṙ = 0 results in

C =
kANN Ã(R)R + �RR � kp,RDtot

R P (Ã)

�A
;

solving Ċ = 0 results in C = kANN Ã(R)R
�A

. The two
nullclines coincide when g(R) = �RR�kp,RDtot

R P (Ã) = 0.
We can show that if

kp,aDtot
A > koff (Dtot

A + Dtot
R ), then

@Ã(R)

@R
< 0,

which holds true for the choice of parameters. Since
g(0) < 0, g(kp,RDtot

R

�R
) > 0, and @g(R)

@R = �R �
kp,RDtot

R
@P (Ã)

@Ã

@Ã(R)
@R > 0, we conclude that there is a

unique positive solution for g(R) = 0.
3) The trace of J determines the existence of a limit cycle:

Notice that det(J) = �A(�R � kp,RDtot
R

@P (Ã)

@Ã

@Ã(R)
@R ) > 0,

thus the sign of tr(J) determines stability of the unique
equilibrium point tr(J) = �kANN (Ã + R @Ã

@R ) � �A � �R +

kp,RDtot
R

@P (Ã)

@Ã

@Ã(R)
@R .

Combining these observations with 1) and 2), we can apply
the Poincare-Bendixson theorem to conclude that system (1)
has a limit cycle whenever tr(J) > 0.

B. In Vitro Barkai-Leibler Oscillator with Crosstalk
We now consider a more realistic model, taking into

account that both the activator and repressor switches use
a common enzyme, RNAP, to transcribe their RNA signals,
while the activator and repressor RNA signals are degraded
by a common enzyme, RNase R. (To simplify presentation,
we do not explicitly model the enzyme reactions of RNase
H.) The limited load capacity of enzymatic processes, known
as Michaelis-Menten kinetics, introduces nonlinear aspects
on the system dynamics such as zero-order ultrasensitivity
[22]. Following typical Michaelis-Menten assumptions, i.e.
low enzyme concentration and quasi-steady-state approxima-
tion for enzyme-substrate complexes, we replace the first-
order reaction rates with enzyme-mediated reactions with
enzyme concentrations (Etot or Etot

d ), catalytic rates (kcat

or cat), and Michaelis constants (KM or M ). The reaction
rate equations for DA and DR are unchanged.

Ȧ =
E

tot
⇣

kcat,A,ON

KM,A,ON
D

ON
A +

kcat,A,OF F

KM,A,OF F
D

OFF
A

⌘

1 +
DON

A
KM,A,ON

+
DOF F

A
KM,A,OF F

+
DON

R
KM,R,ON

+
DOF F

R
kM,R,OF F

�kONADA � kONADR � kANNAR

�E

tot
d

cat,A

M,A
A

1 + A
M,A

+ R
M,R

+ C
M,A

(2)

Ṙ =
E

tot
⇣

kcat,R,ON

KM,R,ON
D

ON
R +

kcat,R,OF F

KM,R,OF F
D

OFF
R

⌘

1 +
DON

A
KM,A,ON

+
DOF F

A
KM,A,OF F

+
DON

R
KM,R,ON

+
DOF F

R
KM,R,OF F

�kANNAR + E

tot
d

cat,A

M,A
C � cat,R

M,R
R

1 + A
M,A

+ R
M,R

+ C
M,A

Ċ = kANNAR � E

tot
d

cat,A

M,A
C

1 + A
M,A

+ R
M,R

+ C
M,A

To compare the above model and the linear system (1)
in a mathematically controlled way [23], we require that
there is no extra degree of freedom for the Michaelis–
Menten enzyme reactions. Thus, we set the production rates
for both first-order model and Michaelis–Menten enzyme
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model equivalent at the unique fixed point of the system.
For example, kp,A and ↵ constrain the RNAP parameters as
follows.

kp,A =

kcat,A,ON

kM,A,ON
E

tot

1 +
D̄ON

A
kM,A,ON

+
D̄OF F

A
kM,A,OF F

+
D̄ON

R
KM,R,ON

+
D̄OF F

R
KM,R,OF F

↵ =
kcat,A,OFF

KM,A,OFF
/

kcat,A,ON

KM,A,ON

For the Michaelis–Menten RNAP reaction equations, we
can follow the model reduction procedure for the first-order
model because A is still a function of R only. On the other
hand, the Michaelis–Menten RNase R reaction equations
are functions of A, R, and C, making the model reduction
approach difficult. We focused our attention to numerically
probing system behavior as the saturation levels for RNAP
and RNase change. Using the above constraints, the location
of equilibrium point and molecular flux (production and
degradation rates) at the equilibrium point remain identical
for different enzyme parameter choices.

We note that the moderate saturation of RNAP signif-
icantly deteriorated the oscillation (Figure 2C), while the
moderate saturation of RNase R increased the period of os-
cillations — at high levels of saturation the oscillations effec-
tively disappear. (Figure 2D). Thus, including the crosstalk
effects of substrates competing for free production enzyme
effectively destroy the ability of the system to oscillate while
increased competition for degradation enzyme seemed to
qualitatively alter but not immediately destroy oscillations..
Towards understanding these effects, the next section devel-
ops a theoretical framework for quantifying crosstalk.

III. TOWARDS QUANTIFYING CROSSTALK

Crosstalk arises from species competing for commonly
shared enzymes. We will focus on two types of enzyme-
mediated reactions in biochemical systems, reactions in-
volving production and degradation. We suppose all other
reactions do not involve enzymes and mechanistically depend
on binding among non-enzyme components (thus operating
on a slower time scale) — we call these reactions ‘inter-
action’ reactions. We decompose the dynamics of a system
accordingly:

ẋ = fc(x) = Pc(x) + I(x) � Dc(x), x(0) = x0 (3)

where x 2 Rn , Pc(x) (Dc(x)) describes the rates of
production (degradation) from enzyme-mediated reactions
with crosstalk effects and I(x) describes the dynamics of
interaction reactions. We will suppose that Pc(x), Dc(x) in
(3) satisfy the Michaelis Menten assumption. If xi is not pro-
duced (degraded) by an enzyme-mediated reaction, then the
corresponding entry in Pc,i(x) (Dc,i(x)) is 0. For notational
convenience, we will suppose that there are ns substrate
species indexed as x1, ..., xns that combine with enzymes to
produce np products: x↵(1), ...., x↵(np). For example, if x↵(i)

is produced by substrates x1, ..., xnk
in competition with

other enzyme-sharing substrates x1, ..., xnc
, we will write

Pc,↵(i)(x) as

Pc,↵(i)(x) = Etot
nkX

j=1

kcat,jgj(x1, ..., xnc) (4)

⌘ Etot
nkX

j=1

kcat,j

xj

kM,j

1 +
Pnc

l=1
xl

kM,l

Similarly, we let xd(1), ..., xd(nd) denote the list of system
states that are degraded commonly by one or more enzymes
and suppose that for a given xi degraded by one or more
enzymes shared by competing substrates xd(1), ..., xd(nc) ,
Dc,i(x) can be written as

Dc,i(x) = Etot
d cat,iui(xd(1), ..., xd(nc))

⌘ Etot
d cat,i

xi

M,i

1 +
Pd(nc)

l=d(1)
xl

M,l

(5)

The processes of production and degradation are funda-
mental to system function: without production reactions, a
system cannot synthesize the various components required to
achieve intended dynamics and without degradation, a sys-
tem quickly saturates and is potentially unstable. However,
any production or degradation reaction involving competing
substrates will elicit crosstalk effects. Thus, crosstalk arising
from enyme-mediated reactions is a fundamental feature of
any sufficiently complex biochemical system.

To quantify crosstalk in such systems, we need to compare
the dynamics of system (3) against the dynamics of a
reference system that is free of crosstalk. We note that the
dynamics of such a reference system will still retain any
crosstalk-free dynamics. This may include terms modeling
nonlinear saturated production of a metabolite via a single
dedicated enzyme (which is sometimes the mode of produc-
tion in large metabolic networks). However, in the reference
system, we suppose there are additional dedicated enzymes
for each substrate (originally competing for a shared enzyme
in system (3)). Such a system, that reflects the complexity
and function of the original system may be impossible to
synthesize physically. However, there are (simpler) scenarios
where it is possible to design a system with dedicated
enzymes for each substrate. Though such systems do not
scale nicely, they provide a motivation for defining the
following conceptual crosstalk-free system:

Definition 1: [Alternative System] Given the system (3)
with equilibrium point xe, define the alternative production
function P (x) : Rn ! Rn, where for each nonzero entry
P↵(i)(x), i = 1, ..., np, if x↵(i) is produced from substrates
x1, ...., xnk

2 {x1, ..., xns
} in system (3), then P↵(i)(x) is

defined as

P↵(i)(x) ⌘ Etot
nkX

j=1

kcat,jhj(xj) (6)

⌘ Etot
nkX

j=1

kcat,j

xj

KM,j

1 + xj

KM,j

. (7)

Implicitly, we posit the presence of E1, ..., Ens enzymes
that combine respectively with x1, ..., xns , with identical
concentration totals Etot

1 = . . . = Etot
ns

= Etot and
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identical Michaelis Menten constants. Similarly, we define
D(x) : Rn ! Rn to be a vector of functions describing
the degradation dynamics for nd species each produced
by nd different enzymes. If xd(1), ..., xd(nc) are substrates
competing for degradation enzyme Ed then we write the
degradation rate of xd(i) as

Dc,d(i)(x) ⌘ Etot
d cat,ivi(xd(i)) (8)

⌘ Etot
d cat,i

xi

M,i

1 + xi

M,i

(9)

We then define the alternative system to be

ẋ = fa(x) = P (x) + I(x) � D(x), x(0) = x0 (10)

Remark 1: The alternative system retains the same set
of interaction reactions as the original system and thus,
sequestration, activation and inhibition, or branch displace-
ment reactions are all conserved. Wherever production or
degradation of a component of the system is concerned,
however, the dynamics of the alternative system are modified
to remove competition effects between substrates. Note that
the effects of nonlinear saturation are still retained through
the use of Michaelis Menten functions.

Remark 2: The alternative system is a conceptual refer-
ence system to compare against the crosstalk system (3).
For the comparison to be fair, it is important that (10) satisfy
internal equivalence [23], namely that we hold fixed any dy-
namics or parameters unassociated with crosstalk, e.g. I(x)
or x(0). The remaining degrees of freedom are the functional
forms of P (x) and D(x) and their respective parameters.
Following the process in [23], we impose constraints on the
external behavior to achieve external equivalence of the alter-
native system: 1) the enzymes satisfy the Michaelis Menten
assumption and 2) in the absence of competing species, the
production (degradation) rates of Pc,↵(i)(x) and P↵(i)(x)
(Dc,d(i)(x) and Dd(i)(x)) coincide. We can think of P↵(i)(x)
as the limit of Pc,↵(i)(x) when exactly one of x1, ..., xs

are nonzero. These constraints imply that the Michaelis
constants, catalytic constants, and enzyme concentrations for
P↵(i)(x) and Pc,↵(i)(x) are identical. Thus, as we compare
the behavior of both systems, any differences in production
or degradation rates are purely due to effects of crosstalk.

With the definition of an alternative system in place, we
can now quantify the amount of crosstalk that occurs between
a pair of species in system (3).

Definition 2 (Pairwise Crosstalk): Let xi and xj be two
distinct species in the biochemical system (3). Writing
Pc,i(x) as in equation (4), we define the directed pairwise
production crosstalk of xj on xi as

cp(xi, xj) =

(
Pi(x) � Pc,i(x), xj 2 {x1, ..., xnc

}
0, otherwise.

(11)

Writing Dc,i(x) as in equation (5), we define the directed
pairwise degradation crosstalk of xj on xi as

cd(xi, xj) =

(
Di(x) � Dc,i(x), xj 2 {x1, ..., xnc

}
0, otherwise.

(12)

We define the undirected pairwise production crosstalk
between xi and xj as Cp(xi, xj) ⌘ cp(xi, xj) +
cp(xj , xi) and the undirected pairwise degradation crosstalk
as Cd(xi, xj) ⌘ cd(xi, xj) + cd(xj , xi). We refer to
C(xi, xj) ⌘ Cp(xi, xj) + Cd(xi, xj) as the pairwise
competitive crosstalk between xi and xj .

Remark 3: By construction, Cp(xi, xj) � 0 and
Cp(xi, xj) = Cp(xj , xi). Cp does not, in general, define
a metric. However, if we restrict the domain of Cp to a
P-class, defined as a set consisting of a single product
x↵(i) and substrates x1, ..., xnc

competing for the enzyme
that produces x↵(i), then it follows immediately from the
definitions that Cp is a pseudometric.

Remark 4: Similarly, if we consider any set of species
D degraded by a single enzyme, Cd(xi, xj) then defines
a metric on the associated discrete state space D = Vs

of degradable species. In particular, the 2-tuple (D, Cd)
is a metric space and if f is some contraction mapping
on (X , Cd), then we can apply the contraction mapping
theorem.

Remark 5: If K is the number of distinct enzymes in the
system and x1 competes for enzyme E1, x2 for E2,..., xK for
EK , then by Definition 2, defining �p(x) = Pc(x) � P (x)
and �d(x) = Dc(x) � D(x) we get

fc(x) � fa(x) = Pc(x) � Dc(x) � P (x) + D(x)

= �p(x) � �d(x)

=
KX

k=1

�cp(x, xk) + cd(x, xk),

where cp(x, xk), cd(x, xk) is the vector of associated pair-
wise crosstalk terms. This result shows that the production
crosstalk and degradation crosstalk vectors can be recovered
through an appropriate collection of states that represen-
tatively span the set of enzymes for which competitive
crosstalk occurs.

Definition 3 (System Crosstalk): The total system
crosstalk for system (3), denoted F is defined as
CF ⌘

P
i<j C(xi, xj)

IV. CROSSTALK AND ROBUST DESIGN

Since crosstalk is fundamental to system function, it is
important to understand how to design a system in a way
that reduces crosstalk. Intuitively, if we want production
of a particular state to be reliable, we should impose the
constraint that the populations of all other competing species
are relatively small in comparison with the population of the
state we wish to produce. On the other hand, if we want a
state to follow a reference trajectory, it is important that we
understand how the relative (dynamic) populations of each
species drive the crosstalk that our target state experiences.
In this section, we present results that can be viewed as two
types of design criteria: 1) criteria that impose constraints
on the dynamics of the system in order to keep the effects
of crosstalk small or bounded 2) criteria for attenuating
crosstalk by altering specific system parameters.

Our first result shows that by effectively bounding com-
peting species, we can make the dynamics of a particular
state robust.
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Proposition 1 (Designing robust x↵(i)): Suppose x↵(i) is
produced by a single substrate xi in competition with
x1, ..., xi�1, xi+1, ..., xnc for enzyme E. Further, suppose
x↵(i) is degraded by enzyme Ed, in competition with
xd(1), ..., xd(nd). If for a given x0, there exists ⇢ > 0 and
� > 0 such that the solution of the crosstalk system (3),
xc(t), lies in both the set

Si
⇢ = {x 2 Rn

>0|
ncX

j=1,j 6=↵(i)

xj

kM,j
⇡ ⇢} (13)

and the set

Si
� = {x 2 Rn

>0|
d(nd)X

j=d(n1),j 6=↵(i)

xj

M,j
⇡ �} (14)

and xi � ⇢, � for all t � 0, then the magnitude of the
crosstalk

|Cp(x↵(i), xl) + Cd(x↵(i), xq)| ⇡ O(
1

xi
),

for any l 6= i and q 6= i, and for any interval of time [t, t + ⌧ ]

|x↵(i),c � x↵(i),a| ⇡ O(
⌧

x↵(i),a
)

Proof: We write Pc,↵(i)(x) and P↵(i)(x) as before. The
first result follows directly from computing the magnitude of
the difference and the second from integrating over the time
interval.
In practice it may be difficult to force the trajectories of all
other competing states associated with a single enzyme to be
small. Likewise, it may be difficult to increase the Michaelis
constants of all other competing species while maintaining
the same Michaelis constant for x↵(i). Such a constraint may
be difficult to satisfy with an oscillator featuring two or three
states coupled by the same production enzyme. In order for
oscillations to occur, one state must be presumably abundant
or another state relatively depleted. When competing for the
same enzyme, this presents a difficulty for the depleted state
as it returns from the minimum in its oscillatory trajectory to
its peak, since it must outcompete the more abundant state
for production enzyme. Analogous complications arise from
a shared degradation enzyme. Conceptually, one solution to
avoid this unwanted crosstalk coupling is to provide two or
three independent enzymes that facilitate the production and
degradation of oscillatory states, but the number of enzymes
are limited so this approach is not scalable.

Next, we take a different approach. Rather than consider-
ing the dynamical constraints that must be imposed for the
crosstalk system to match the alternative system, we consider
effectively tuning certain aspects of the system so that the
crosstalk can be rendered negligible.

While it may be difficult to introduce n independent
enzymes to drive and regulate the trajectories of n different
states, it is certainly possible to incorporate extra substrates
that reliably maintain a steady state and exhibit population
sizes that wash out the fluctuations of native system species.
We emphasize this result, for its conceptual importance, but
more especially for its practical significance.

Proposition 2: Let x1, ..., xs be the set of system func-
tional substrates and let xs+1, ..., xs+b be a set of extra
substrates that compete for the same enzyme as x1, ..., xs.
Similarly, let xd(nd)+1, ..., xd(nd)+w be a set of extra sub-
strates that compete for degradation enzyme. Suppose these
extra substrates maintain steady state. If the trajectory of
xc(t) satisfies

sX

j=1

xj

kM,j
⌧

s+bX

j=s+1

xj

kM,j

and
d(nd)X

j=1

xj

M,j
⌧

d(nd)+wX

j=d(nd)+1

xj

M,j

then fc(x) is robust to crosstalk and can be approx-
imated with linear production and degradation functions
PL(x), DL(x), scaled to reflect the dominating flux of the
junk substrates.

Proof: The result follows immediately from approxi-
mating the denominators in each entry of Pc(x) and Dc(x)
with the dominant steady state terms of the extra substrates.

Since the denominators in the production and degrada-
tion functions are approximately constant, production and
degradation become linear processes. Again, since the extra
substrates are at steady state, this is effectively the same as
increasing the Michaelis constants of competing substrates.
It is these Michaelis constants that dictate the effects of
production and degradation crosstalk in system (3).

The next theorem reveals a second parameter that is key
to attenuating crosstalk: the total production and degradation
enzyme concentrations. Intuitively, if we want to reduce com-
petition among the species for enzyme, then by increasing
the amount of enzyme, each substrate will be degraded or
produced as if degradation or production were a first order
process — the availability of substrate dictates the progress
of the reaction.

Theorem 1: Suppose xq are bounded for q = 1, ..., ns and
xl are bounded for l = d(1), ..., d(nd)). Then as Etot and
Etot

d ! 1 then Cp(xi, xj), Cd(xi, xj) ! 0 for all i 6= j
and taking Etot ! 1, Etot

d ! 1 simultaneously, then the
total system crosstalk CF ! 0.

Proof: First, we consider a single production enzyme,
E, as the argument is identical from enzyme to enzyme.
Suppose xi is produced by E in combination with substrates
x1, ..., xk that form complexes (xl : E), l = 1, ..., k complex
in competition with x1, ..., xnc

and Etot is large, we instead
write xl = xfree

l + (xl : E) since there will be a nontrivial
amount of enzyme-substrate complex formed unlike the
usual limiting enzyme assumption in the Michaelis-Menten
formulation. Suppose xj 2 {x1, ..., xnc

}, we will show

lim
Etot!1

cp(xi, xj) = 0,

(otherwise, c(xi, xj) = 0 already). First, in the crosstalk
system (3), detailed balance yields

(xi : E) =
xfree

i Efree

KM,i
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and by conservation of mass, we get

Efree = Etot �
ncX

l=1

(xl : E)

= Etot �
ncX

l=1

(xl � xfree
l )

� Etot �
ncX

l=1

xl

Following the derivation in [19], the modified production
rates can then be written as

Pc,i =
kX

q=1

kcat,q

xfree
q Efree

KM,q

and substituting for xfree
q = xq

1+ Efree

KM,q

we get

Pc,i =
kX

q=1

kcat,q
xqE

free

KM,q + Efree
(15)

Similarly, for the alternative system, we can derive

Pi =
kX

q=1

kcat,q

xqE
free
q

KM,q + Efree
q

.

By definition of the alternative system, Etot
q = Etot for q =

1, ..., k. For each q, we have

E

free
q +E

free
q

xq

KM,q + E

free
q

= E

free+E

free
ncX

l=1

xl

KM,l + E

free
.

and

cp(xi, xj) =
kX

q=1

kcat,q

 
xqE

free
q

KM,q + E

free
q

� xqE
free

KM,q + E

free

!

=
kX

q=1

kcat,q

0

@
E

free � E

free
q +

X

l 6=q

E

free
xl

KM,l + E

free

1

A

and as Etot approaches infinity, since xl are bounded, all
free xl are sequestered by enzyme, so that the free enzyme
can be expressed as Efree = Etot �

Pnc

l=1 xl. Similarly,
Efree

q = Etot � xq, q = 1..., k. Thus, by direct substitution
limEtot!1 c(xi, xj) =

lim
Etot!1

kX

q=1

kcat,q

0

@�
ncX

l=1

xl + xq +
X

l 6=q

Efreexl

KM,l + Efree

1

A

= 0.

Since xi and xj were arbitrary, then the undirected crosstalk
Cp(xi, xj) must also approach 0 for all i and j as Etot

increases.
A similar proof shows the degradation rates satisfy

lim
Etot

d !1
Cd(xi, xj) ! 0

Thus, by the definition of CF and the algebraic properties
of limits,

lim
Etot,Etot

d !1
CF = lim

Etot,Etot
d !1

X

i,ji<j

C(xi, xj)

=
X

i,j,i<j

lim
Etot!1

Cp(xi, xj)

+
X

i,j,i<j

lim
Etot

d !1
Cd(xi, xj)

= 0

This theorem suggests that by increasing the total produc-
tion and degradation enzyme, the production and degradation
crosstalk correspondingly decrease. Indeed, this is made clear
by examining the alternate expressions for production and
degradation in equation (15) and substituting the expression
for Efree = Etot�

Pnc

l=1 xl. As we increase the total amount
of enzyme, both the alternative and crosstalk production rates
become approximately linear, with the alternative system
approaching slightly faster than the crosstalk system. This
suggests a mode of adjusting system performance by simply
attenuating the production or degradation crosstalk. Again,
this theorem is practically significant in in vitro systems
where total enzyme concentrations can be tuned with high
precision. As a final example, we illustrate how tuning
enzyme concentrations and the effective Michaelis constants
in the Barkai-Leibler system attenuate crosstalk to recover
oscillatory dynamics.

Example 1 (Tuning the Barkai-Leibler System): In the
Barkai-Leibler system (2), when RNAP is saturated,
the templates DA and DR vie for the common RNAP,
resulting in crosstalk: they effectively down-regulate each
other’s transcription rates. This crosstalk interferes with A
promoting its own production through DA. Because the
production and degradation of A must be on a fast time-scale
to achieve oscillation, we see that RNAP-mediated crosstalk
deteriorates oscillation (Figure 2c).

On the other hand, RNA signals A, R, and C experience
degradation crosstalk as they each compete for saturated
RNase R, i.e. through crosstalk the three RNA signals be-
come mutually activating. Except for R activating A (which
is weak when M,R > M,A), this mutual activation would
fortify existing activating reaction cascades — A promotes
creation of R and formation of C, R promotes formation
of C, and C returns to R. Therefore, qualitatively, the
saturation of RNase R helps the circuit oscillate (Figure 2d).
In Figure 3, we see that by increasing RNAP and introducing
background template, we effectively reduce the production
crosstalk and we recover oscillations in the Barkai-Leibler
system (2). We note that by simultaneously increasing all
enzyme concentrations, the first-order production degrada-
tion model (1) and subsequent analysis becomes valid again,
but over a different set of parameters. Thus models with
linear production and degradation are not only instrumental
in characterizing simplified system dynamics but represent
the limit for large enzyme concentrations or small substrate
concentrations.
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and by conservation of mass, we get

Efree = Etot �
ncX

l=1

(xl : E)

= Etot �
ncX

l=1

(xl � xfree
l )

� Etot �
ncX

l=1

xl

Following the derivation in [18], the modified production
rates can then be written as

Pc,i =
kX

q=1

kcat,q

xfree
q Efree

KM,q

and substituting for xfree
q = xq

1+ Efree

KM,q

we get

Pc,i =
kX

q=1

kcat,q
xqE

free

KM,q + Efree
(13)

Similarly, for the alternative system, we can derive

Pi =
kX

q=1

kcat,q

xqE
free
q

KM,q + Efree
q

.

By definition of the alternative system, Etot
q = Etot for q =

1, ..., k. For each q, we have

E

free
q +E

free
q

xq

KM,q + E

free
q

= E

free+E

free
ncX

l=1

xl

KM,l + E

free
.

and

cp(xi, xj) =
kX

q=1

kcat,q

 
xqE

free
q

KM,q + E

free
q

� xqE
free

KM,q + E

free

!

=
kX

q=1

kcat,q

0

@
E

free � E

free
q +

X

l 6=q

E

free
xl

KM,l + E

free

1

A

and as Etot approaches infinity, since xl are bounded, all
free xl are sequestered by enzyme, so that the free enzyme
can be expressed as Efree = Etot �

Pnc

l=1 xl. Similarly,
Efree

q = Etot � xq, q = 1..., k. Thus, by direct substitution
limEtot!1 c(xi, xj) =

lim
Etot!1

kX

q=1

kcat,q

0

@�
ncX

l=1

xl + xq +
X

l 6=q

Efreexl

KM,l + Efree

1

A

= 0.

Since xi and xj were arbitrary, then the undirected crosstalk
Cp(xi, xj) must also approach 0 for all i and j as Etot

increases. A similar proof shows the degradation rates satisfy

lim
Etot

d !1
Cd(xi, xj) ! 0
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Fig. 3. A simulation of the Barkai-Liebler system using identical parame-
ters as Figure 2c), but with four times the amount of RNAP (220nM ) and
1.08µM of background template.

Thus, by the definition of CF and the algebraic properties
of limits,

lim
Etot,Etot

d !1
CF = lim

Etot,Etot
d !1

X

i,j,i<j

C(xi, xj)

=
X

i,j,i<j

lim
Etot!1

Cp(xi, xj)

+
X

i,j,i<j

lim
Etot

d !1
Cd(xi, xj)

= 0

This theorem suggests that by increasing the total production
and degradation enzyme, the production and degradation
crosstalk correspondingly decrease. Indeed, this is made clear
by examining the alternate expressions for production and
degradation in equation (13) and substituting the expression
for Efree = Etot�

Pnc

l=1 xl. As we increase the total amount
of enzyme, both the alternative and crosstalk production rates
become approximately linear, with the alternative system
approaching slightly faster than the crosstalk system. This
suggests a mode of adjusting system performance by simply
attenuating the production or degradation crosstalk. Again,
this theorem is practically significant in in vitro systems
where total enzyme concentrations can be tuned with high
precision. As a final example, we illustrate how tuning
enzyme concentrations and the effective Michaelis constants
in the Barkai-Liebler system attenuate crosstalk to recover
oscillatory dynamics.

Example 1 (Tuning the Barkai-Liebler System): In the
Barkai-Liebler system (2), when RNAP is saturated,
the templates DA and DR vie for the common RNAP,
resulting in crosstalk: they effectively down-regulate each
other’s transcription rates. This crosstalk interferes with A
promoting its own production through DA. Because the
production and degradation of A must be on a fast time-
scale to achieve oscillation, we see that RNAP-mediated
crosstalk deteriorates oscillation (Figure 2c). On the other
hand, RNA signals A, R, and C experience degradation
crosstalk as they each compete for saturated RNase R, i.e.,
through crosstalk the three RNA signals become mutually
activating. Except for R activating A (which is weak when
M,R > M,A), these mutual activation would fortify the
existing activating reaction cascades — A promotes creation
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Fig. 3. A simulation of the Barkai-Leibler system using identical parame-
ters as Figure 2c), but with four times the amount of RNAP (220nM ) and
1.08 µM of background template.

V. FUTURE WORK & CONCLUSIONS

In this work, we introduced signaling crosstalk as a
fundamental phenomenon of enzyme-mediated reactions in
biochemical systems. As a motivating example, we intro-
duced an in vitro version of the Barkai-Leibler oscillator
and demonstrated that under simplifying assumptions, the
system would oscillate. We posed a more realistic model
that introduced crosstalk in the production functions and
consequently, the system did not oscillate. We then posed a
theoretical framework for quantifying crosstalk and used it to
derive several dynamical constraints and theoretical results
that suggest design strategies for attenuating crosstalk. Fi-
nally, we showed that by effectively changing the Michaelis
constants or by changing the total enzyme concentrations,
the Barkai-Leibler system (1) was able to recover oscillatory
behavior.

We note that in this work we did not model degradation
products. Because the chemical identity of degradation prod-
ucts for a single enzyme-substrate pair can vary from one
instance of a degradation reaction to another, the resulting
number of states required to describe all potential degrada-
tion products can be staggering. Furthermore, degradation
products can result in crosstalk in the interaction terms —
- a type of crosstalk we did not explore. Future research
will address crosstalk from degradation products, hidden
regulatory interactions from background gene expression,
and develop a framework for quantifying crosstalk in vivo.

Additionally, crosstalk from interference with degradation
products will have nearly negligible effects upon initializa-
tion of an in vitro system but will dramatically increase as
the system runs for an extended period of time. These degra-
dation products interfere on a faster time scale than enzyme-
mediated reactions and can partially or completely sequester
vital components of the system, thus changing the effective
binding energies between reactants and ultimately the future
reaction rates. Finally, the interactions are uncertain as the
populations of the each of the potential degradation products
is uncertain and highly dependent on the activity of the
enzyme. Thus, crosstalk from degradation interference is
fundamentally different than crosstalk from production or
degradation. Future research will address crosstalk from
degradation products, hidden regulatory interactions from

background gene expression, and develop a framework for
quantifying crosstalk for in vivo systems.
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