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Modeling Environmental Disturbances with the Chemical Master Equation
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I. INTRODUCTION

Abstract— In this paper we consider the problem of repre-

senting a biological system and its environment using a stochas-

tic modeling framework. We first introduce a decomposition of

the global chemical reaction system into two systems: a system

of interest and its environment. We then present and derive

a decomposition of the chemical master equation to achieve a

representation describing the dynamics of the system of inter-

est, perturbed by an environmental disturbance. We use this

decomposition to model examples of two types of environmental

disturbances: the disturbance a system experiences through

loading effects from limited resources and the disturbance

a system experiences when perturbed by an antibiotic that

modifies transcription or translation rates.

Cell to cell variability in gene expression [1] is a property
of small volume, small copy number biochemical systems.
From a controls standpoint, this variability imposes funda-
mental constraints on feedback performance [2] and create
a challenge in designing circuits that must function around
a specific operating point. Classic studies of synthetic os-
cillators [3] reveal that variable gene expression leads to
variable oscillator phases, desynchronization, variable am-
plitude etc. However, recent strategies using combinatorial
promoter architectures provide hope that the design of a
robust oscillator [4] is possible. However, when the same
oscillator was exposed to loading effects in [5] and oscillation
disappeared entirely in some cells, while others produced
slow irregular oscillations. Despite using a stochastic model
to account for cell-to-cell variability, the stochastic model
used in [4] could not account for environmental disturbances.

Perhaps the most widely accepted stochastic model for
biochemical systems is the chemical master equation, a
special instance of the forward Chapman Kolmogorov equa-
tion [6]. In [7], the author shows that the chemical master
equation is an exact model for a well-mixed, thermally equili-
brated gas-phase system. Typically, when used to model bio-
chemical systems in liquid phase, it is deemed a “mesoscopic
description” of dynamics, as it is considered an intermediate
representation between the microscopic representation of
molecular dynamics and the macroscopic representation of
a mass action kinetics model. Thus, in theory, the chem-
ical master equation contains the necessary information to
capture the randomness of molecules colliding and moving
in a well-mixed volume as well as an appropriate level of
abstraction to escape the analytical burden of simulating
physical trajectories and collisions of individual molecules
in the system.

However, finding an analytical solution for the chemical
master equation is generally difficult, if not impossible, as it
is typically infinite dimensional in the state-space [6]. Except
in special instances where models are amenable to generating

function approaches for exact solutions [8], [9] or where
conservation laws enable finite bounds on the state-space
[10], exact solutions for the master equation are difficult to
obtain in closed form analytical expressions. Two alternatives
exist to address this problem: 1) simulation using techniques
such as ⌧ -leaping, hybrid approaches, time scale separation
approaches, or 2) reducing the model to a simpler or tractable
form, e.g. using the finite state space projection algorithm
[10], the sliding window abstraction approach [11], as well
as spectral methods using basis functions to expand and
approximate probability densities [12], [13], [14].

One of the outstanding challenges in modeling stochas-
tic biochemical systems is the problem of accounting for
system complexity—in a single cell there are millions of
biomolecules present at any point in the cell cycle and
many are often neglected in models but are critical to
system function, e.g. ribosomes, RNAP, tRNA, �-factors.
Additionally, there is strong evidence to suggest that host,
compositional, spatial and functional context, often ignored
in synthetic and systems biology models, play a role in
regulating gene expression [15], [16]. Global variables such
as these are typically unaccounted for in stochastic models,
yet they impact the dynamics of the biological systems
studied.

In control theory, it is standard to include modeling terms
that account for environmental disturbances [17] — often
the disturbances are considered bounded and controllers are
subsequently designed to be robust to disturbances contained
within those bounds. Such a perspective may be valuable
when complemented with recent advances in experimental
techniques employing optogenetic ex vivo control based
on in silico models to regulate in vivo gene expression in
cells [18], [19]. Once a notion of environmental disturbance
is formulated, we can begin to probe the robustness of a
particular ex vivo controller with respect to environmental
perturbations in a stochastic modeling framework.

Toward this end, in this work we develop an approach
for capturing environmental disturbances using the chemical
master equation. We view our efforts as supplementary to the
model reduction results of [12], [13], [14], as their techniques
can be applied in concert with our own approaches or in
a stepwise approach. Our results are complementary to the
results in [9], [20], where total output noise is decomposed
into system-extrinsic noise and system-intrinsic noise. Here
we consider decomposition at the level of system dynamics
as opposed to system outputs, as ultimately our goal is a
framework for designing synthetic systems with dynamics
robust to bounded environmental disturbances. Additionally,
we seek to develop a framework that enables exclusion of
any system variables that add unwanted model complexity
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but that do not substantially enrich the dynamical behavior
of the system. Therefore, our aim is to develop models that
account for environmental disturbances, but only those that
substantially impact the dynamics of the system.

Our paper is organized as follows. In Section II we
introduce notation, define the concept of a chemical reac-
tion system, and the review the classical chemical master
equation: a dynamical model for describing the reaction
system dynamics. In Section III, we introduce the notion of
a system-environment decomposition on a chemical reaction
system preparatory for our main result. In Section IV A and
IV B, we derive the main result, an additive decomposition
of (plant) system dynamics into two terms: the first being
a description of the evolving intrinsic uncertainty in the
system and the second being a description of the distur-
bance that extrinsic uncertainty can have on the intrinsic
state. We conclude in Section V with two simple examples
of environmental disturbance, a model describing loading
effects between two genes and a model describing antibiotic
perturbation to transcription and translation rates.

II. BACKGROUND: THE CHEMICAL MASTER EQUATION

In this section, we introduce the mathematical framework
and notation for our analysis. We begin by reviewing the
concept of a chemical reaction system. Since we ultimately
seek to decompose this global system into a specific system
and its environment, we will refer to it as the global chemical
reaction system.

Definition 1: Define C = (S,R) to be a global chemical
reaction system with S = {S1, .., SN} being a set containing
all N chemical species in the global chemical reaction
system. Let R = {R1, ..., RM} be a set enumerating all
M reactions in C.

Remark 1: The elements of the set R are reactions. Math-
ematically, a reaction Rj 2 R is defined based on a species
set S and can be thought of as an ordered 4-tuple of sets
Rj = ({c1, .., ck}, {S1, .., Sk}, {d1, .., dn}, {P1, ..., Pn}) ,
where c1, .., ck, d1, .., dn 2 N, S1, .., Sk, P1, .., Pn 2 S . The
first set of R specifies the stoichiometry of the reactants, the
second set the list of reactants, the third set the stoichiometry
of the products, and the fourth set the list of the products.
Typically, we will follow convention and express the reaction
Rj as

c1S1 + · · ·+ ckSk ! d1P1 + · · ·+ dnPn.

and not as an ordered 4-tuple. The above convention can be
viewed as an implicit reference to the underlying mathemat-
ical object that defines the reaction Rj : an ordered 4-tuple
of sets.

The global chemical reaction system is thus a list of all
potential chemical species and chemical reactions occurring
in a relevant biological chassis, e.g. a cell, an in vitro
test tube, vesicle, etc. In principle, the size of S and R
are very large, since it must include all possible partial
products of transcription, i.e. aborted transcripts, background
molecules critical for metabolism, intermediate metabolites,
etc. Most biological models exclude the complexity found

in the global chemical reaction system, as it contents are
mostly unknown, in addition to being computationally and
analytically intractable.

We restrict our attention to global chemical reaction sys-
tems whose contents are well stirred, in a fixed volume, and
at a constant temperature. Under these conditions, we define
X(t) to be a vector of copy numbers, with Xi being the copy
number of Si at time t, i = 1, .., N. We suppose that for each
reaction Rj 2 R there exists a propensity function aj(X(t))
that characterizes the probability of reaction Rj firing in time
interval dt as aj(X(t))dt [7]. We note this is an assumption,
rather than a consequence as in [7] since C is not necessarily
a gas-phase system. We define the stoichiometric transition
vector for each reaction Rj as ⇠j =

⇥
⌫1 . . . ⌫N

⇤T , where
⌫k describes the stoichiometric change in Xk during reaction
Rj . Thus, if X = xo before Rj fires, then X = xo + ⇠j

after Rj has fired. Further, with some abuse of notation, we
will suppose that if X = (Y, Z), then ⇠j [Y ] denotes the
subvector of ⇠j that records the stoichiometric change of Y.
The chemical master equation of the system C is then given
as

d

dt

P (X(t)|X(to)) =
MX

j=1

aj(X(t)� ⇠j)P (X(t)� ⇠j |X(to))

� P (X(t)|X(to))
MX

j=1

aj(X(t)) (1)

The chemical master equation specifies the evolution of
the joint probability mass function of X(t). Since X(t)
is a vector of species copy numbers, its entries take on
nonnegative integer values. We refer to the set of values that
X(t) can take as the configuration space.

III. DECOMPOSITION OF THE GLOBAL CHEMICAL
REACTION SYSTEM

Now that we have a way of describing the global chemical
reaction system C, we can consider its relationship to a
system of interest. This system may coincide with all the
measurable chemical species in the global chemical reaction
system, a select set of genes under study and their asso-
ciated transcriptional and translational products, or even a
set of chemical species that are associated with a synthetic
biocircuit. Our representation of this system should thus be
flexible, as it may require the inclusion of specific reporter
molecules and their precursor mRNA transcripts, or include
only a single chemical species, corresponding to an inducible
and measurable protein. The only constraint we impose is
that all its chemical species are within S.

Definition 2: Let S1, .., Sn 2 S be a list of relevant
chemical species. We define the chemical reaction system

Sp ⌘ (Sp
, R

p)

associated with this list of species and refer to this as our
system or plant, where S

p ⌘ {S1, .., Sn} and R

p = {Rj 2
R|all products and reactants of Rj are in S

p}.
Notice in defining such a system in the global chemical

reaction system, we assume knowledge of a pre-specified list
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of chemical species S1, .., Sn. This list of chemical species
then determines the list of reactions intrinsic to this system,
as they do not require the presence of chemical species
outside the system to function. Alternatively, we could pro-
ceed by defining a list of relevant reactions and subsequently
impose that all products and reactants associated with those
reactions be the list of species for our system. However,
a reaction set defined in that manner may not include all
self-contained reactions of chemical species in the system,
as there may be other chemical reactions that only involve
elements of Sp

. Finally, we use this particular approach as it
is typical to think of biological systems first as a collection
of chemical species and subsequently enumerate the list of
relevant reactions. We define the environmental chemical
reaction system as follows:

Definition 3: Define the chemical reaction system Se =
(Se

, R

e) as the environmental system, where

S

e ⌘ S\Sp , Re ⌘ R\Rp

We will suppose X is ordered so that X = (Xp
, X

e)T ,
i.e. the first n elements specify the copy number of the
species in S

p while the last N � n elements specify the
species in S

e
. Viewing the chemical master equation as

a state-space model with P (Xp(t), Xe(t)|Xp(to), Xe(to)).
We will refer to P (Xp(t)) as the state of the system and
P (Xe(t)) as the state of the environmental system. Finally,
we denote the number of reactions in R

p and R

e as mp and
me respectively.

IV. AN ADDITIVE DECOMPOSITION OF THE CHEMICAL
MASTER EQUATION

Our goal is achieve a representation of the chemical master
equation that captures only state of the system Sp, P (Xp(t)),
how it evolves over time and how the environmental system
impacts that evolution. Ideally, we would like to write a
decomposition of the form

d

dt

P (Xp(t)) = f(Xp(t)) + g(Xp(t), Xe(t)). (2)

Such a representation would allow us to include in f(Xp(t))
any dynamics that are relevant to the system, e.g. for design
or parameter estimation purposes, while the environmental
disturbance term g(Xe(t)) would act as a perturbation or
disturbance to the nominal system’s trajectory. As the deriva-
tion of the decomposition is long, we divide it into two parts:
the first part evaluates the consequences of decomposing the
species set S of the global chemical reaction system and the
second part evaluates the consequences of decomposing the
reaction set R of the global chemical reaction system.

A. Part I : Leveraging the Partition on Chemical Species

The primary obstacle to achieving a decomposition of
the form (2) is that the chemical master equation (1) de-
scribes the evolution of the joint probability mass func-
tion P (Xp(t), Xe(t)|Xp(to), Xe(to)). Typically, to separate
P (Xp(t)) from P (Xp(t), Xe(t), Xp(to), Xe(to)) requires
an assumption of independence between the stochastic pro-
cesses X

p(t) and X

e(t). This is a strong assumption, one

that contradicts the very purpose of our analysis: to under-
stand how the environmental state affects system dynamics.

Alternatively, we consider averaging out the effects of
X

e(t), i.e. marginalizing the joint probability mass to obtain
the marginal in X

p(t). Rather than laboriously analyzing
the effect of individual sample trajectories of X

e(t) on
X

p(t), this approach has the advantage of describing the
average effect of the distribution of sample trajectories Xe(t)
on X

p(t). First, we write the chemical master equation to
include the decomposition of the global chemical species set
S:

d

dt

P

✓
X

p

X

e

�
, t

◆
=

mX

j=1

aj

✓
X

p(t)
X

e(t)

�
� ⇠j

◆
P

✓
X

p

X

e

�
� ⇠j , t

◆

� aj

✓
X

p(t)
X

e(t)

�◆
P

✓
X

p(t)
X

e(t)

�◆
.

Here we have suppressed the convention of carrying the
initial condition as a conditioning argument in each proba-
bility mass function, as it will make the derivation easier to
read. With some abuse of notation, we write the argument
of the probability mass function as X

p or X

e, which will
be an abbreviation for the probability mass function actually
evaluated at a point (x, y) in the configuration space, i.e.
P (Xp(t) = x,X

e(t) = y). If we use P (Xp
, X

e
, t) to refer

to the probability mass function, we will explicitly say so.
The same notation will hold true for conditional and marginal
probability density functions. Let S(Xe) denote the set of
values that Xe can assume in the configuration space. If we
sum over S(Xe), the left hand side becomes

X

S(Xe)

d

dt

P

✓
X

p(t)
X

e(t)

�◆
=

d

dt

X

S(Xe)

P

✓
X

p

X

e

�
, t

◆

=
d

dt

X

S(Xe)

P (Xe(t)|Xp(t))P (Xp(t))

=
d

dt

P (Xp(t))
X

S(Xe)

P (Xe(t)|Xp(t))

=
d

dt

P (Xp(t)) .

The first equality holds due to uniform convergence of the
sum

P
S(Xe) P (Xe(t)|Xp(t), Xp(to), Xe(to). The second

and third equality holds from the law of conditioning.
In the last equality, we use the fact that the function
P (Xe(t)|Xp(t), Xp(to), Xe(to)) when summed over all val-
ues of X

e in the configuration space is unity. We now
address the right hand side of the chemical master equation.
Summing over S(Xe) and conditioning on X

p(t) gives

X

S(Xe)

h mX

j=1

aj

✓
X

p(t)
X

e(t)

�
� ⇠j

◆
P

✓
X

p(t)
X

e(t)

�
� ⇠j

◆

� aj

✓
X

p(t)
X

e(t)

�◆
P

✓
X

p(t)
X

e(t)

�◆ i

=
mX

j=1

X

S(Xe)

aj

✓
X

p(t)
X

e(t)

�
� ⇠j

◆
fc(X

p
, X

e)fm(Xp)

�
mX

j=1

X

S(Xe)

aj

✓
X

p(t)
X

e(t)

�◆
P (Xe(t)|Xp(t))P (Xp(t))
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where the conditional and marginal probability mass func-
tions are written as

fc(·) = P (Xe(t)� ⇠j [X
e] |Xp(t)� ⇠j [X

p])

fm(·) = P (Xp(t)� ⇠j [X
p]).

For each j = 1, ..,M we pull out the marginal of Xp(t) and
summing over S(Xe) gives

d

dt

P (Xp(t)) =
mX

j=1

P (Xp(t)� ⇠j [X
p])↵j(X

p � ⇠j [X
p] , t)

�
mX

j=1

P (Xp(t))↵j(X
p
, t)

where

↵j(X
p(t)) ⌘

X

S(Xe)

aj

✓
X

p

X

e

�
, t

◆
P (Xe(t)|Xp(t)) .

In summary, the preceding equations marginalize the master
equation of the joint probability mass function, leveraging
the decomposition of X into X

p and X

e. We consider
↵j(Xp(t)) as the averaged propensity functions for the
system S , since they can also be expressed as

↵j(X
p(t)) = EXe(t)|Xp(t) [aj(X

p(t), Xe(t))] .

Writing out the marginalized master equation, we have

d

dt

P (Xp(t)) =
mX

j=1

↵j(X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

�
mX

j=1

↵j(X
p
, t)P (Xp(t)) (3)

and note that the averaged propensity functions ↵j(Xp(t))
specify the probability that reaction Rj will happen in
the time interval [t, t+ dt], ↵j(Xp(t)dt, averaged over all
possible values of Xe(t) is ↵j(Xp(t))dt. The decomposition
of the species set S = S

p[Se thus produces a representation
of the chemical master equation that describes only the
evolution of the marginal density P (Xp(t)).

B. Part II: Leveraging the Partition on the Chemical Reac-
tions

If we now incorporate the decomposition on the reac-
tion set R, we can also rewrite the propensity functions
in terms of the mp reactions that only involve chemi-
cal species in S

p and me reactions involving system or
environmental species. Notice the term

Pm
j=1 ↵j(Xp �

⇠j [Xp] , t)P (Xp(t)� ⇠j [Xp]) can be written as
mX

j=1

↵j(X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

=

mpX

j=1

↵j(X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

+
meX

j=1

↵j(X
p � ⇠j [X

p] , t)P (Xp(t)� ⇠j [X
p])

and since the first mp reactions do not involve X

e, we
can write for each reaction j = 1, ..mp the associated
propensity function for those reactions can be written
aj(Xp(t), Xe(t)) = aj(Xp(t)) and so we can further writePm

j=1 ↵j(Xp � ⇠j [Xp] , t)P (Xp(t)� ⇠j [Xp]) as

=

mpX

j=1

P (Xp(t)� ⇠j [X
p])⇥

X

S(Xe)

aj (X
p(t)� ⇠j [X

p])P (Xe(t)|Xp(t))

+
meX

j=1

P (Xp(t)� ⇠j [X
p])

X

S(Xe)

↵j

✓
X

p(t)
X

e(t)

�
� ⇠j

◆

=

mpX

j=1

aj (X
p(t)� ⇠j [X

p])⇥

P (Xp(t)� ⇠j [X
p])

X

S(Xe)

P (Xe(t)|Xp(t))

+
meX

j=1

P (Xp(t)� ⇠j [X
p])

X

S(Xe)

↵j

✓
X

p

X

e

�
� ⇠j , t

◆

=

mpX

j=1

aj (X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p]) (1)

+
meX

j=1

↵j(X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

with a similar derivation holding for ⇠j ⌘ 0, thus implying
that the marginalized chemical master equation, or state-
space model for P (Xp(t)), becomes:

d

dt

P (Xp(t))

=

mpX

j=1

aj (X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

�
mpX

j=1

aj (X
p
, t)P (Xp(t))

+
meX

j=1

↵j

✓
X

p

X

e

�
� ⇠j , t

◆
P (Xp(t)� ⇠j [X

p])

�
meX

j=1

↵j

✓
X

p

X

e

�
, t

◆
P (Xp(t))

⌘ f

P (P (Xp(t))) + f

E(P (Xe(t)|Xp(t)), P (Xp(t))) (4)

where ‘⌘’ indicates that we define f

P and f

E as

f

P (·) =
mpX

j=1

aj (X
p(t)� ⇠j [X

p])P (Xp(t)� ⇠j [X
p])

�
mpX

j=1

aj (X
p
, t)P (Xp(t)) ,

f

E(·) =
meX

j=1

↵j

✓
X

p

X

e

�
� ⇠j , t

◆
P (Xp(t)� ⇠j [X

p])

�
meX

j=1

↵j

✓
X

p

X

e

�
, t

◆
P (Xp(t)) .
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To summarize, we first imposed a decomposition on the
chemical species of the global chemical reaction system
to obtain two subsystems: the system of interest and its
environment. Second, we marginalized the chemical master
equation to obtain a master equation that described only
the time-evolution of the state of the system P (Xp(t))
using averaged propensity functions ↵j(Xp(t)). Finally, we
imposed knowledge about the dependencies of the reactions
and this resulted in a simple additive decomposition of the
marginalized dynamics.

d

dt

P (Xp(t)) = f

P (P (Xp(t))) + f

E(P (Xe(t)|Xp(t)), P (Xp(t)))

Notice this decomposition depends on two functionals: fP

which depends only on the state of the system P (Xp(t)) and
f

E which depends on the state of the environmental system
P (Xe|Xp(t)) and the state of the system P (Xp(t)). Since
our derivation began from the chemical master equation (1)
of the state of the global chemical reaction system S and
since we have not imposed any additional assumptions—
only using the normalization property of a probability mass
function and conditioning arguments—the decomposition is
exactly consistent with the dynamics of the global chemical
reaction system.

Also, notice that the term f

P (P (Xp(t))) depends on the
exact propensity functions aj(Xp(t)) in its definition. Thus,
if Se = ; or Re = ;, the term f

P (P (Xp(t))) is precisely the
right half-side of the chemical master equation (1). This is
important for several reasons: 1) the term f

P (Xp(t)) can be
viewed as the complete dynamics for a simple model system
involving only the system variables, see the supplementary
information of [9], [20], [8] for examples, 2) recognizing that
f

P (Xp(t)) describes a simple model system’s dynamics, it
may be possible to omit any species in S

p that make the
simplified model Ṗ (Xp(t)) = f

P (Xp(t)) intractable or to
introduce additional species from S

e to ensure the presence
of conservation laws, potentially making the configuration
space of Sp finite.

V. USING THE SYSTEM-ENVIRONMENT DECOMPOSITION
TO MODEL ENVIRONMENTAL DISTURBANCES:

EXAMPLES

A. Ribosomal loading between two genes

We now consider an example system to illustrate how
our decomposition enables modeling of environmental distur-
bances. We suppose the system of interest consists of n = 2
chemical species, S1 is an mRNA m which encodes the
protein p. There are mp = 4 system reactions:

; kTX���! m, m

kTL��! m+ p,

m

�m��! ;, p

�p�! ;

A diagram illustrating the structure of this simple system is
shown in Figure 1. We will assume that basal expression
of mRNA is very low in the absence of an environmental
cue (e.g. transcriptional machinery is scarce) which results

Fig. 1. A schematic illustrating the interactions between chemical species
in the system (5). mRNA and protein are produced constitutively, while
ribosome in the abundant state Ra are able to augment production. A
competing gene X sequesters ribosome away from m, facilitating R’s
transition from the abundant state Ra to the scarce state Rs. A confluence
of two arrows indicates that either kL depends on XON , kF depends on
XOFF , or Ktot depends on f(R).

in a small basal transcription rate kTX . Furthermore, we will
assume that in the absence of a separate environmental cue
(e.g. ribosomal and translation machinery is scarce), the rate
of translation kTL is quite small. Finally, since the rates
represent weak or basal expression, we suppose that kTX

and kTL are zero-order rates that do not depend on the
actual concentration of mRNA or protein (i.e. they are rate
limited by RNAP and ribosome counts). We suppose that the
degradation rates do depend on the copy number of m and p.
We write the dynamics of the chemical master equation for
the isolated (or toy) system as Ṗ (p,m, t) = f

P (P (Xp
, t))

where f

P (P (Xp
, t)) equals

f

P (P (Xp
, t)) = kTLP (p� 1,m, t) + kTXP (p,m� 1, t)

+ �m(m+ 1)P (p,m+ 1, t) + �p(p+ 1)P (p+ 1,m, t)

� kTLP (p,m, t)� kTXP (p,m, t)� (�mm+ �pp)P (p,m, t)
(5)

The solution for this is system is obtained by com-
puting the probability generating function F (z1, z2) =P

m,p z
p
1z

m
2 P (p,m, t). Transforming the system (5) we ob-

tain

@F

@t

= (kTLz1 + �p � �p)
@F

@z1
+ (kTXz2 + �m � �mz2)

@F

@z2

+ (�kTL � kTX)F (z1, z2, t).

By applying the method of characteristics, we obtain a
closed form expression for the probability generating func-
tion F (z1, z2, t) :

e

�(kTX+kTL)t
X

m,p2Z�0

⇣
(z1 + �p)e

(dp�kTL)t � �p

⌘p

⇥
⇣
(z2 + �m)e(�m�kTX)t � �m

⌘m
P (p,m, 0)

from which we can calculate the probability mass function
to be written as follows:
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P (p = k1,m = k2, t) = e

�(kTX+kTL)t 1
k1! k2!

⇥ (6)

X

m,p2Z�0

⇣ k1�1Y

j=0,k1p

(p� j)f1(k1, t)
⇣
�pe

�(kTL��p)t � �p

⌘p�k1

k2�1Y

i=0,k2m

(m� i)f2(k2, t)
⇣
�me

�(kTX��m)t � �m

⌘m�k2

⇥ P (p,m, 0)
⌘

and f1(k1, t) = e

�(kTL��p)k1t
, f2(k2, t) = e

�(kTX��m)k2t

As our system has been chosen to be relatively simple, i.e.
reflecting simplified models that typically exclude environ-
mental species from the list of chemical species, the solution
to (5) is a closed form analytical solution. Notice that the
configuration space is not necessarily finite, so we sum over
the positive integers.

Our goal is to now modify the system dynamics using
f

E(P (Xe(t))) to explore the effect of ribosomal loading.
Because the complexity of the system may introduce nonlin-
earities into the generation function, our approach will be to
simulate the perturbed system and compare it to the isolated
system. We suppose the environmental system contains the
ribosomal species R necessary to increase translation rates,
but that a species X has the ability to sequester ribosomes
away from translating m to p. We will suppose that ribo-
somes can assume two states: either abundant or scarce and
we denote them as R

a and R

s
, respectively. When X is in

the X

ON state, it facilitates the conversion of Ra to R

s (and
vice versa when X is on the X

OFF state). We denote the
environmental reactions as follows:

R

s kF (X)����! R

a
, XOFF ka�! XON

,

R

a kL(X)����! R

s
, XON kd�! X

OFF
,

R

a +m

kTLF���! R

a + p+m, (7)

with the last reaction denoting enhanced translation rates of
m due to the abundance of ribosomes.

We suppose that X is a gene regulated by some external
input and switches randomly between its off and on states,
independent of the current state of R. We assume its expres-
sion to be strong, so that the dynamics of m and p do not
impact its transition rates. We then write the solution for X
as p(X, t) = e

At
P (X, 0) where

A =


�kd ka

kd �ka

�
,

We suppose that P (X(0)) =
⇥
ka kd

⇤T where ka+kd = 1.
Under these assumptions, we can write

P (X(t)) = e

At


ka

kd

�
=


ka

kd

�

Further, substituting and conditioning with P (X(t)) gives us
the following linear equation.

d

dt


P (Ra

, t)
P (Rs

, t)

�
=


�kakL kdkF

kakL �kdkF

�
(8)

Fig. 2. (A) The unperturbed system (7) plotted at t = 13 minutes.
Notice that weak basal expression of protein produces a distribution that
reflects high mRNA average copy number but low average protein copy
number. Here ka = kd = 0. (B) The system simulated with ribosomal
loading effects and a gene X that is in XON state with high probability
(ka = .9) Notice the significant reduction in protein expression when
compared against C or D. (C) The system simulated with X in the off state
(kd = .9) with high probability and in the on state with low probability
(ka = 1). Consequently, the system has significantly higher concentrations
of protein than in plots A or B. (D) The system (7) when X has one
half probability of being on and one half probability of being off. All
simulations were performed in MATLAB using the Gillespie Stochastic
Simulation Algorithm. Common parameters used for all four simulations
were kF = 0.6 /s , kL = 0.4/s, kTX = 0.052 /s , kTLF = 0.4 /s,
�m = 1.4⇥ 10�3 s , �p = .015 s and m(0), p(0) ⇠(Poiss(7)))

The solution can be substituted into
f

E(P (Xe|p,m, t), P (Xp|t)), allowing us to write it
as

� kTLFP (Ra
, t)P (p,m, t) + kTLFP (Ra

, t)P (p� 1,m, t).

A simulation of the system is plotted in Figure 2; we see that
protein expression is the highest when the probability that
gene X stays off is close to 1. The reason is that when X

is on, the amount of free ribosomes decrease (sequestration
of ribosomes by X) and the amount of p produced is less.

To summarize, in this example we have posed a simple
approach for capturing the effects of enzyme sequestration or
loading effects [21]. We showed that the state of the protein
and mRNA of our system can be strongly influenced by
the state of X , which is a chemical species that does not
directly interact with m or p. Thus, ribosomal loading can
lead to indirect interactions between chemical species, even
in a chemical master equation modeling framework.

B. Stochastic switch with antibiotic attenuation

We now examine a particular approach for modeling the
effect of antibiotics on a system. We suppose the system
carries no resistance for two antibiotics and that these two
antibiotics, when perturbing the system, can reduce the rate
of transcription and translation respectively. The system is
composed of an mRNA and a protein, whose expression is
controlled by an upstream binary oscillator X .

We denote the two states of the binary oscillator as
X

H and X

L. When in the high state, transcription and
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Fig. 3. A schematic illustrating the reaction channels and interactions
between chemical species in Example 2. F and K are antibiotics that
attenuate transcription and translation rates respectively. X is a binary
oscillator switching back and forth between a low and a high state with
no transition bias. In the high state, m and p are produced with faster
transcription and translation rates. At the low state, m and p are produced
at much slower rates.

translation of m and p occurs using the same chemical
reactions as in Example 1; however, we denote the high state
propensity coefficient of transcription as kTXH and the high
state propensity coefficient of translation KTXL. In the low
state, the reaction structure is the same again, but this time
with the low transcription and translation reaction propensity
coefficients kTXL and kTLL. A diagram of the system is
shown in Figure 3. Let PH(p,m, t) be the probability mass
function for a system with X = X

H and PL(p,m, t) be the
probability mass function for a system with X = X

L. Notice
that PH (and PL) can be obtained by a direct application
of the solution generated using the method of probability
generating functions from Example 1, evaluated with kTX =
kTXH and kTL = kTLH (kTX = kTLH and kTL = kTLL).
Thus, we can calculate P (p,m, t) as

P (p,m, t) = P (p,m, t|XH)P (XH
, t) + P (p,m, t|XL)P (XL

, t)

= PH(p,m, t)P (XH
, t) + PL(p,m, t)P (XL

, t)

We suppose that P (X, t) = P (X) = 1
2 is stationary and we

model it as a Bernoulli random variable with parameter p =
.5, i.e. the oscillator is unbiased. With these assumptions,
we can calculate the solution of the system P (p,m, x, t)
and in particular, the marginal P (p,m, t). Without any
environmental disturbances, the distribution P (p,m, t) has
a bimodal distribution, see Figure 4A. However, let us now
introduce an environmental system to add disturbance to the
dynamics of the system. In particular, we suppose there are
two types of antibiotic added to the system. The first, which
we denote as K, can be thought of as an antibiotic that
disrupts ribosomal activity (e.g. kanamycin, streptomycin,
chloromphenicol). The second, which we denote as F , can
be viewed as an antibiotic that disrupts the transcription
process (e.g. rafimycin). Accordingly, we suppose their effect
on transcriptional and translation reactions has an overall
negative effect. In particular, we suppose that their reactions
are of the following form:

F

��TXF�����! m, K

+
m

��TLK�����! P (9)

That is, regardless if X = X

H or X = X

L, the antibiotic K

decreases the rate of translation as a function of K while the
antibiotic F slows the rate of transcription as a function of F .
Let us assume that K and F have independent distributions
to describe their copy number. Besides this assumption, let
us suppose that we do not know the distribution. We can
write the environmental disturbance f

E(P (Xe(t)|Xp(t)) as
1X

x=0

��TXxP (F = x|p,m, t)P (p,m� 1, t)

+
1X

y=0

��TLyP (K = y|p,m, t)P (p,m� 1, t)

�
 1X

x=0

��TXxP (F = x|p,m, t)P (p,m, t)

!

�
 1X

y=0

��TLyP (K = y|p,m, t)P (p,m, t)

!

In this scenario, we have an analytically tractable model
for our system but no clear expression for the conditional
distribution of the environment P (XE |p,m, t). Hence there
is no way to compute or simulate P (Xe|p,m, t). However,
we can justify using a particular distribution by the principle
of maximum entropy, which specifies the functional form
of the distribution if there are constraints on the moments
of P (Xe|p,m, t). Certainly, we can assume that the mean
value of K and F are both finite. If so, then from Theorem
5.7 in [22] we then can write

P (Xe = x|p,m, t) = Cr

x

where C = 1
µXe

, r = µXe

µXe+1 and X

e = F or K. Further, if
we suppose that µF and µK are given (or estimated using
empirical measurements), then we get that

f

E(·) = ��TXEF |p,m,t [F ]P (p,m� 1, t)

��TLEK|p,m,t [K]P (p,m� 1, t)

+�TXEF |p,m,t [F ]P (p,m, t)

+�TLEK|p,m,t [K]P (p,m, t)

Notice that this expression for f

E leads to a closed form
solution of P (Xp

, t) = P (p,m, t) in this case. Writing down
the expression for PH(p,m, t) and PL(p,m, t) the reader
will see that fE has the effect of perturbing the transcription
and translation rates of the original system to be

kTX = kTX ��TXEF |p,m,t [F ] ,

kTL ��TLEK|p,m,t [K] ,

where kTX and kTL can be replaced with kTXH ,
kTXL, kTLH , kTLL respectively to obtain PH(p,m, t) and
PL(p,m, t) as a function of the perturbed rates. The final
solution is then calculated as before, as

P (p,m, t) = P (p,m, t|XH)P (XH
, t) + P (p,m, t|XL)P (XL

, t)

= PH(p,m, t)P (XH
, t) + PL(p,m, t)P (XL

, t)

In Figure 4, we plot the results of our simulation. When we
perturb just with antibiotic F , the mean of the mRNA de-
creases while the mean of the protein remains approximately
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Fig. 4. A: The unperturbed system is bimodal, with a large peak at low
mRNA and low protein count and a smaller peak at high protein and high
mRNA count. B: Antibiotic F reduces transcription, thus reducing average
mRNA count. (compare to A) C: Antibiotics F and K reduce transcription
and translation and abolish bimodality of the system. D: Antibiotic K
reduces translation, abolishing bimodality but leaves a strong peak at lower
mRNA copy numbers.

the same (the second peak remains and bimodality is not
abolished). When we perturb the system with just K, there
is a decrease in translation rates and bimodality disappears.
Finally, when we perturb with F and K at the same time,
both protein and mRNA copy number decrease as expected
and we lose bimodality.

Our example thus illustrates a simple way of modeling
the effects of antibiotics on transcription and translation. It
does not require complete knowledge about the distribution
of the antibiotics but it does require some estimate on the
parameters for µF , µK , and �TX ,�TL.

VI. CONCLUSIONS AND FUTURE WORK

In this work we derived a decomposition of the chemical
master equation into an additive sum of two terms: the
first describes the dynamics of a system of interest, the
second has the interpretation of the averaged environmental
disturbance or more precisely, averaged propensity functions
for all reactions involving environmental species. We illus-
trated the use of this decomposition to model two types of
environmental effects: 1) the effect of ribosomal loading
from an orthogonal gene with high (or low) demand for
the ribosomes in a cell, 2) the effect of antibiotics on a
bimodal system with unknown environmental distribution.
We approximated the latter environmental effect by using
a maximum entropy distribution to show that antibiotics
directly perturb the transcription and translation rates of the
system, scaled by the mean of the antibiotic copy number
distribution. Future work will involve experimental studies
to ascertain the appropriate model classes for describing the
various environmental disturbances, i.e. antibiotic stress, heat
stress, oxidative stress, osmotic stress, nutritional stress, etc.
We plan on developing novel system identification proce-
dures, as well as levering existing techniques [23] to build
a library of models that characterize the manner in which
environmental disturbances impact both synthetic and natural
biological processes.
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