
A Domain-Specific Language for Reactive Control

Protocols for Aircraft Electric Power Systems

Huan Xu
California Institute of

Technology
1200 E. California Blvd.

MC 104-44
Pasadena, CA 91125

mumu@caltech.edu

Necmiye Ozay
California Institute of

Technology
1200 E. California Blvd.

MC 107-81
Pasadena, CA 91125

necmiye@caltech.edu

Richard M. Murray
California Institute of

Technology
1200 E. California Blvd.

MC 107-81
Pasadena, CA 91125

murray@cds.caltech.edu

ABSTRACT
This paper describes the use of a domain-specific language,
and an accompanying software tool, in constructing correct-
by-construction control protocols for aircraft electric power
systems. Given a base topology, the language consists of
a set of primitives for standard specifications. The accom-
panying tool converts these primitives into formal specifica-
tions, which are used to synthesize control protocols. We
can then use TuLiP, a Python-based software toolbox, to
synthesize centralized and distributed controllers. For sys-
tems with no time involved in the specifications, this tool
also provides an option to output specifications into a SAT-
solver compatible format, thus reducing the synthesis prob-
lem to a satisfiability problem. We provide the results of our
synthesis procedure on a range of topologies.

1. INTRODUCTION AND MOTIVATION
Domain-specific languages are languages adapted to a par-

ticular application or set of tasks. While general purpose
languages (e.g., C or Java) may o↵er broader programming
features, domain-specific languages (e.g., HTML or Verilog)
provide more expressiveness and ease of use within a given
domain [6]. Examples of languages used in the context of
cyber-physical systems can be found in [1] and [3].

In aerospace, next-generation aircraft have moved away
from purely mechanical and hydraulic subsystems, instead
increasing reliance on electric power to supply subsystems,
including flight-critical ones [8]. The growing complexity of
electric power systems on aircraft, coupled with the need
for safety, reliability, and autonomy, has increased the need
to utilize formal methods and verification tools in order to
properly analyze and design such large-scale systems. Previ-
ous work on embedded control software synthesis has been
explored by Piterman and Pnueli [10]. Wongpiromsarn et
al. [13] and Ozay et al. [9] have used the temporal logic
planning toolbox TuLiP [14] to address the issue of creating

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

HSCC ’13 Philadelphia, Pennsylvania USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

correct-by-construction control protocols for aircraft man-
agement systems. Given a system topology, Xu et al. [15]
show how text-based requirements can be converted to lin-
ear temporal logic (LTL), a formal specification language
(see [11] for more details) to synthesize centralized and dis-
tributed controllers.

While the use of formal specification languages and correct-
by construction synthesis methods is beneficial in the area of
controller design, unfamiliarity of formal methods amongst
engineers may provide a challenge to widespread implemen-
tation of formal methods. We propose a domain-specific
language that combines tools already in existence: visual
programs for single-line diagrams, which engineers are famil-
iar with, and primitives, which provide a more formal struc-
ture to specifications. The development of a domain-specific
language, therefore, provides an easy interface between in-
dustry engineers knowledgeable in aircraft systems and the
methods/tools used by computer scientists and software en-
gineers. The rest of the paper is structured as follows: Sec-
tion 2 explains how a given topology and components can
be used in a domain-specific language, represented as “prim-
itives.” Section 3 explains the specification conversion tool,
and Sections 4 and 5 provide a discussion/comparison of
the synthesis results for di↵erent topologies, and extensions
to current work. Figure 1 provides a flow diagram for the
automatic specification generation procedure.

<contactor>!
 <failure>!
 10e-3!
 </failure>!
 <opentime>!
 15!
 </opentime>!
 <closetime>!
 20!
 </closetime>!
</contactor>!

!<bus>!
 <failure>!
 10e-3!
 </failure>!
 <essential>!
 true!
 </essential>!
</bus>!

!"#$%&'("#&)
*"+$,+-)

./()01-21#)
("4,+,5)

6,"-"78&9)

:11%;)
!2&<"=<+71#)
>&#&,+31,)

?"<&9)

:@("6)

Figure 1: Architecture for the specification genera-
tor. The problem description includes three inputs:
a single-line diagram, a component library, and a set
of primitive specifications. The output is a set of
formal specifications compatible with Yices (a SAT
solver) or TuLiP (a reactive synthesis tool).

2. DOMAIN-SPECIFIC LANGUAGE

Submitted, Hybrid Systems: Computation and Control (HSCC) 2013
http://www.cds.caltech.edu/~murray/papers/xom13-hscc.html

This section introduces an aircraft electric power system
and the set of primitives used in the domain-specific lan-
guage.

2.1 Single-Line Diagram and Components
Figure 2 shows a single-line diagram for an electric power

system on board a more-electric aircraft. The topology
includes a combination of generators, contactors, rectifier
units, transfomers, buses, and loads. The following is a
brief description of the components referenced in the pri-
mary power distribution single-line diagram [8].

Figure 2: Single line diagram of an electric power
system adapted from a Honeywell, Inc. patent [7].
Two high-voltage generators, APU generators, and
low-voltage generators serve as power sources for the
aircraft. Power can be routed from sources to buses
through the contactors, rectifier units, and trans-
formers. Buses are connected to subsystem loads.

AC generators provide high-voltage and low-voltage power
to all components in the system. Main generators are pow-
ered by engines, while backup APU generators can be used
in case of emergencies. AC and DC buses deliver power
to high-voltage and low-voltage loads. Buses can be either
essential or non-essential; essential buses supply power to
loads that are safety-critical, while non-essential buses sup-
ply loads that may be shed in the case of a power failure.
Contactors (represented in Figure 2 by a`) are high-current
electric switches that connect the flow of power from sources
to buses and loads. They can reconfigure (i.e., switch be-
tween open and closed) through commands from one or mul-
tiple controllers. Rectifier units convert AC power to DC
power, transformers step down a high voltage to a lower
one, and a combination transformer rectifier unit both con-
verts AC to DC power and lowers the voltage.

2.2 Input Files
Two sets of inputs must be provided from the informa-

tion given by the diagram (connectivity) and components
(attributes). First, the single-line diagram, a visual rep-
resentation, can be converted into a graph data structure,
where contactors are edges, and all other components rep-
resent nodes1. Let G = (V,E) be a graph of the electric
power system, with V = {v1, v2, . . . , vn} containing all com-
ponents consisting of generators, buses, and rectifier units.
Loads, transformers and batteries are not implemented in
our current formulation but can be easily integrated. The
set of edges E = {e1, e2, . . . , em} then contains all contac-
tors (as well as solid wire links between components). The
adjacency matrix Aij is a square adjacency matrix whose
diagonal entries are zeros, and whose non-diagonal entries
are ones or zeros depending on whether a contactor (or solid
link) exists between vertices.

The second set of information is an XML file containing
component attributes. Consider a simple case in which the
XML file contains a listing for each type of component: con-
tactor, generator, rectifier unit, and bus. Figure 3 depicts a
example of an XML file for contactor and bus components.
Each component has an attribute of name and failure prob-
ability, i.e., the probability each component has of failing
over a certain number of operational hours. A failure prob-
ability of 10�3, for example, means that the component may
fail once over the course of 103 operating hours. Buses have
an additional boolean attribute of essential, as well as an
attribute time which states how long the bus may be un-
powered for during a flight. In addition, contactors have at-
tributes opentime and closetime, denoting the time it takes
to physically open or close the contactor.

<contactor>!
 <failure>!
 1e-3!
 </failure>!
 <opentime>!
 15!
 </opentime>!
 <closetime>!
 20!
 </closetime>!
</contactor>!

!<bus>!
 <failure>!
 1e-3!
 </failure>!
 <essential>!
 true!
 </essential>!
</bus>!

!"#$%&'("#&)
*"+$,+-)

./()01-21#)
("4,+,5)

6,"-"78&9)

:11%;)
!2&<"=<+71#)
>&#&,+31,)

?"<&9)

:@("6)

Figure 3: A sample XML component library file for
contactor and bus components that have attributes
of opentime, closetime, and essential.

2.3 Specifications and Primitives
Given the topology of an electric power system and com-

ponent attributes, the main design problem is determining
all correct configuration of contactors for all flight conditions
and faults that may occur. We now discuss some common
or standard specifications relevant to the electric power sys-
tem problem, and describe how these specifications may be
written using a set of primitives.

Environment Assumptions: The overall system safety
level determines the possible combinations of failures which

1Graphical tools exist which can convert visual diagrams
into XML code. We begin with the assumption that such a
conversion has been implemented and the XML file is parsed
into an adjacency matrix.

may occur. Consider the case where generators and recti-
fier units are environment variables, i.e., uncontrolled. Be-
cause each component has an individual failure probability,
we can determine how many components may fail at a single
instance (while satisfying the system safety rating), and pro-
duce a set of valid environment assumptions. Let G and R
be the sets of all generators and rectifier units, respectively.
In the environment primitive (in which only generators and
rectifier units are uncontrolled), the first input is a system
safety level, followed by all subsets of components that are
uncontrolled. This can be written as env(10�9,Ge,Re),
where Ge ✓ G and Re ✓ R.

No-paralleling of AC sources: One common specifi-
cation may be that no two asynchronous AC sources can
power a bus simultaneously. A non-paralleling primitive
thus has inputs of any subset of G. This can be written
as noparallel(Gp), where Gp ✓ G.

Essential buses: Essential buses supply power to safety-
critical subsystems and loads, and thus must be powered
at all times. Let the set of all buses be B. An essential
bus primitive can input any subset of B. This is written as
essbus(Be), where Be ✓ B.

Bus unpowered time: Non-essential buses supply power
to loads and subsystems which can tolerate loss of power for
up to a certain period of time. This time information is
captured from the component library, and thus the prim-
itive may be written buspower(Bs), where Bs ✓ B, and
Be \ Bs = ;.

Disconnect with unhealthy: When certain compo-
nents (generators or rectifier units) become unhealthy, they
must be disconnected from the system for safety reasons, i.e.,
the contactor connecting that component to other buses or
components, needs to open. A disconnect primitive can take
as input the union of subsets of G and R. This primitive is
written as disconnect(Gd[Rd), where Gd ✓ G andRd ✓ R.

3. TOOL INTEGRATION
The electric power system can be abstracted into di↵er-

ent model views. We consider the following four views: un-
timed, discrete variables; discrete-time, discrete variables;
continuous-time, discrete variables; and continuous-time, con-
tinuous variables. A domain-specific language can facili-
tate consistency between these views by providing a uni-
fying framework for constituent elements. The following
section discusses how the design problem can be automati-
cally synthesized within the model view of discrete variables
with no time or discrete-time. Our tool, which converts the
above primitives into a set of specifications, is written us-
ing Python, with the additional use of the software package
NetworkX to study the underlying graph structure. The
sourcecode is included in TuLiP version 0.4a (and above)
under tools/AES directory.2

3.1 SAT Solver
Consider the case in which timing specifications are ig-

nored. Generators and rectifier units can either be healthy
or unhealthy, contactors may either be open or closed, and
buses can either be powered or unpowered. The synthesis
problem reduces to a Boolean satisfiability problem. For
each set of environment scenarios, a specific configuration
of contactors satisfies all system requirements. Our current

2AES Directory

tool converts the set of primitives to a format compatible
with the solver Yices [5]3.

Based on the graph G derived from the single-line dia-
gram, we automatically instantiate components, such that

(define g :: bool)

(define r :: bool)

(define b :: bool)

(define c :: bool)

for all g 2 G, r 2 R, b 2 B, and c 2 C, where C is the set of
all contactors.

Because the SAT solver searches for a di↵erent solution
for each configuration of environment behaviors, we gener-
ate all allowable environment sets, given the system safety
level, and thus generate a set of environment assertions. Let
the set of environment variables P ✓ G ⇥ R. Environment
assumptions can be written as (assert (= p [status])) for
all p 2 P, and [status] is either true or false, denoting a
healthy or unhealthy component.

To avoid paralleling, the tool takes all pairs of generators
input from the primitive and searches for all simple paths
between items in each pair. For all simple paths between
generator pairs, we disallow all contactors within each path
to be closed at the same time. Consider, for example, a path
that contains three contactors (c1, c2, and c3) between AC
sources g1 and g2, as seen in Figure 4. The non-paralleling
specification output would be of the form

(assert (not (and (= c1 true)

(= c2 true) (= c3 true)))),

where true denotes a closed contactor.

b1! b2!

g1!

c1! c3!

c2!

g2!

Figure 4: Simplified version of a the single-line dia-
gram. Two AC generators connect to two buses via
three contactors.

In order to assert that a bus must always remain pow-
ered, we first output a set of specifications which determine
under what conditions a bus is powered or unpowered. We
first search for all paths between each element input into
the primitive, and output all path configurations that would
cause the bus to be powered. This means all other buses,
generators, and contactors in said path must be powered,
healthy, and closed (respectively). If, in none of the paths,
the conditions for a powered bus are met, then the bus is

3To be precise, Yices is an SMT solver which can also be
used as a SAT solver.

unpowered. Consider again the simple example from Fig-
ure 4. The two output specifications for bus b1 when it is
powered would be

(assert (! (and (= g1 true)

(= c1 true)) (= b1 true))),

and

(assert (! (and (= g2 true) (= c2 true)

(= b2 true) (= c3 true)) (= b1 true))).

Then, b1 is unpowered if neither of the two conditions above
hold. This is written as

(assert (! (not (or (and (= g1 true)(= c1 true))

(and(= g2 true)(= c2 true)(= b2 true)(= c3 true))))

(= b1 false))).

These rules generalize to all AC and DC buses in the graph.
Therefore, to assert that all buses are always powered, we
write (assert (= b true)), for all b 2 B.

To disconnect an unhealthy generator or rectifier unit, we
search the graph for adjacent nodes, and assert an implica-
tion that if a component is unhealthy, the neighboring con-
tactor must be open (take a value of false). This is written
as (assert (! (= p false) (= cp false))), for all p 2 P,
and cp ✓ C is the subset of contactors connecting component
p to an adjacent component.

From the above set of specifications, Yices solves a sat-
isfiability problem and determines the configuration for all
contactors, for each environment configuration. Figure 5
shows an portion of the output from Yices. Thus a con-
troller from Yices is a set of contactor configurations for
each environment.

State 0 with rank 0 -> <g0:1, g1:1, ru4:1, ru5:1, c23:0,
c24:1, c67:0, b6:1, c13:1, b7:1, b2:1, b3:1, c35:1, c02:1>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 1 with rank 0 -> <g0:0, g1:1, ru4:0, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!
State 2 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:0, c23:1,
c24:1, c67:1, b6:1, c13:1, b7:1, b2:1, b3:1, c35:0, c02:0>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 3 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!

(= b5 true)!
(= b6 true)!
(= b7 true)!
(= c56 true)!
(= c67 true)!
(= c78 true)!
(= c89 true)!
(= c1516 true)!
(= c1617 true)!

(= g2 false)!
(= c27 false)!
(= g3 true)!
(= c38 false)!
…!
(= r10 true)!
(= c510 true)!
(= r11 true)!
(= c611 true)!
!

(= c611 true)!
(= r12 true)!
(= c712 true)!
(= r13 true)!
(= c813 true)!
(= r14 true)!
(= c914 true)!
(= c56 true)!
(= c67 true)!

Figure 5: A sample output from Yices for a single
environment configuration.

3.2 TuLiP
The benefits of an untimed model view is reducing the

synthesis problem to a satisfiability problem, in which case
a SAT solver may be used, the complexity of which is less
than that for synthesis algorithms. More realistic design
problems in the electric power system domain require timed
specifications. We therefore incorporate formats compatible
with TuLiP as well as Yices in the translation from primi-
tives to specifications. TuLiP uses model view (II), which
includes discrete-time and discrete variables; specifications
are written in linear temporal logic (LTL). We assume the
reader to have prior knowledge of LTL notation. For further
details, see [11].

We visit the primitives described in Section 2.3, and begin
by instantiating all variables (controlled and uncontrolled).

Variables are again discrete and boolean. For all environ-
ment (uncontrolled) components, instantiations are written
as env vars[p] = [0, 1], for all p 2 P. For all controlled vari-
ables, instantiations are written as disc sys vars[s] = [0, 1],
for all s 2 B [C.

To specify the allowable environment assumptions, we
again take all possible allowable sets of failures which can oc-
cur given the system failure probability. Assume the failure
rate for each component is independent. Then, all combina-
tions of failures that have a failure probability greater than
the overall system level must be accounted for. The output
specification, then, uses an always (⇤) operator alongside a
string of disjunctions. Consider a simple example with two
environment variables g1 and g2 that can take a value of
0 (unhealthy) or 1 (healthy). Suppose the overall system
safety level is 1e� 5, and each generator has a failure prob-
ability of 1e � 3. The probability that both generators are
unhealthy becomes 1e� 6, which is smaller than 1e� 5. So
that acceptable environment behaviors include three possi-
bilities: g1 = 1, g2 = 1; g1 = 1, g2 = 0; and g1 = 0, g2 = 1.
One the tool calculates this set of environments, the TuLiP
compatible specification output is

assumptions = ⇤((g1 = 1 ^ g2 = 1) _
(g1 = 1 ^ g2 = 0) _ (g1 = 0 ^ g2 = 1)).

The non-paralleling specification disallows all contactors
to be closed if they are within a path connecting two AC
sources. In LTL, this is implemented using a never operator
(⇤¬). Using the example, from Figure 4, a non-paralleling
specification would be of the form

guarantees = ⇤¬((c1 = 1) ^ (c2 = 1) ^ (c3 = 1)).

The primitives for bus power and essential bus power first
create a set of discrete properties that specify the conditions
for when a bus is powered. Just as in the case using Yices,
we find all paths from a bus to a generator, and list the
component configurations needed for a bus to receive power.
In Figure 4, for example, there are two properties for which
bus b1 can be powered. This is written as

disc props[d1] = (g1 = 1) ^ (c1 = 1),

disc props[d2] = (g2 = 1) ^ (c2 = 1) ^ (b2 = 1) ^ (c3 = 1).

Then, specifications output when bus b1 is powered are

guarantees = ⇤((d1) ! (b1 = 1)),

guarantees = ⇤((d2) ! (b1 = 1)).

If neither proposition is true, b1 is unpowered, written as

guarantees = ⇤(¬((d1) _ (d1)) ! (b1 = 0)).

These specifications are generalizable for all AC and DC
buses within the topology.

Once these specifications are written, timing on buses can
be introduced. If a bus is an essential bus, then another
specification guarantees that the bus always remains pow-
ered. This is written as guarantees = ⇤(b = 1), for all
b 2 Be. For non-essential buses, we impose a maximum al-
lowable time for which the bus may be unpowered. This
value is taken from the XML component library file.

Note that LTL can be used to specify discrete-time prop-
erties for synchronous systems in which all processes (i.e.,
components) proceed in a lock-step manner. The next op-
erator has a “time”measure so that, for a given property ',

#' signifies at the next time instant ' is true. To specify
a property occurring at some point in the future, multiple
next operators can be used, such that #k' , # # · · · # '
asserts that property ' holds k time instants in the future.
To avoid the use of multiple next operators, which TuLiP
cannot interpret, the time specifications in the electric power
system uses a clock variable to define an equivalent property.

For each non-essential bus b 2 Bs, we introduce a unique
counter tk. We discretize each time step to take � time. If a
bus is unpowered, at the next step the counter will increment
by �. Counters are also bounded by a set maximum time
limit. If the bus is powered, at the next step the counter
will reset to 0. These specifications are output as

guarantees = ⇤((bk = 0) ! (#(tk) = tk + 1)),

guarantees = ⇤((bk = 1) ! (#(tk) = 0)),

for all bk 2 Bs. Then, we limit the number of “ticks” tk can
increment to T

� steps. This specification is output as

guarantees = ⇤(tk  T
�
).

The final set of specifications involve removing unhealthy
components from the overall system. To disconnect an un-
healthy generator or rectifier unit, we use an implication.
For all environment variables pi, for i 2 {1, . . . , ne}, if any
component becomes unhealthy then the contactor connect-
ing pi to an adjacent component must open. This is written
as guarantees = ⇤((pi = 0) ! (^j2Ni(cij) = 0)), where
Ni denotes the set of vertices adjacent to vertex i.

These specifications are input into TuLiP, which interfaces
with a digital design synthesis tool implemented in JTLV
[10]. If the specification is realizable, TuLiP outputs a finite-
state automaton that represents the control protocol. Figure
6 shows a portion of a sample automaton.

State 0 with rank 0 -> <g0:1, g1:1, ru4:1, ru5:1, c23:0,
c24:1, c67:0, b6:1, c13:1, b7:1, b2:1, b3:1, c35:1, c02:1>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 1 with rank 0 -> <g0:0, g1:1, ru4:0, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!
State 2 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:0, c23:1,
c24:1, c67:1, b6:1, c13:1, b7:1, b2:1, b3:1, c35:0, c02:0>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 3 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!

(= b5 true)!
(= b6 true)!
(= b7 true)!
(= b8 true)!
…!
(= g0 true)!
(= c05 false)!
(= g1 true)!
(= c16 false)!

Figure 6: A sample finite-state automaton output
from TuLiP that represents a control protocol.

4. RESULTS AND DISCUSSION
In this section we discuss some results for several electric

power system topologies using both Yices and TuLiP. For
ease of comparison, consider the base topology shown in
Figure 7 that includes both AC and DC components. Each
vertical set of components (generator, DC bus, rectifier unit,
AC bus, and two contactors) form a base unit. Units may
be connected together by contactors located between AC
and DC buses. We examine the results for topologies with
varying numbers of units.

gen!

ac bus!

ru!

dc bus!

ac bus!

ru!

dc bus!

gen!

Figure 7: The base topology used to discuss the
domain-specific language and conversion tool. Each
base unit consists of a generator, DC bus, recti-
fier unit, and AC bus. Units are connected to each
other by contactors between buses. More units are
connected on the right (represented by the dotted
wire/line.)

Table 1 lists the amount of time our tool takes to con-
vert a set of primitives for a given base topology into formal
specifications. Columns 2 and 3 show the size of the begin-
ning graph, while column 4 compares the di↵erence in times
between converting specifications into a Yices or TuLiP-
compatible format. The di↵erence in conversion times is
insignificant for smaller sized graphs. The Yices conversion
takes more time due to the increase of allowable environment
configurations. Because we solve a series of static problems,
the tool must write a set of specifications for each of the envi-
ronment scenarios. One thing to note is that the topologies
we explore have many symmetries in the graph. Therefore,
not all environment conditions need to be enumerated, e.g.,
an engine failure on the left side can be treated as similar to
an engine failure on the right side.

Given the set of automatically generated specifications,
Table 2 compares the time it takes for Yices and TuLiP to
solve/synthesize a controller for a given topology. Column 2
lists the total number of environment configurations, i.e., the
number of static problems Yices must solve. Then, Column
3 shows the time for Yices to solve a single environment con-
figuration, as well as the time it takes for TuLiP to solve the
full synthesis problem. Columns 3 and 4 show that solving
a series of satisfiability problems is much time and memory
e�cient than using a synthesis tool. Increasing the topology
from four to five base units dramatically increases the com-
putation time. In addition, we applied the conversion tool
to the single-line diagram topology from Figure 2. While the
number of environment configurations is large, generation of
all other primitives requires only 10 seconds. For one envi-
ronment configuration, Yices takes 0.9 seconds and 39MB
of memory to solve. This shows that the use of our conver-
sion tool can be applicable to industrial-sized problems for
untimed problems.

The size of the Yices controllers is the number of di↵erent

Table 1: Specification Conversion Time for Yices
(Y) and TuLiP (T) [time in seconds]
Base Units Nodes Edges Conversion Time (Y/T)

4 16 18 .13/.11
5 20 23 .25/.26
10 40 48 24/18
12 48 58 141/111
15 60 73 1634/1205

Table 2: Comparison of Synthesis Time for Yices
(Y) and TuliP (T). [time in seconds]
Base Units Yices Env. Time(Y/T) Mem. (Y/T)

4 25 .25/10.7 25MB/215MB
5 36 .82/1015 36MB/16GB
10 121 205.7/– 53MB/–
12 169 1410/– 158MB/–
15 256 62208/– 1.2GB/–

environment configurations. TuLiP synthesized controllers
with four and five base units have 256 and 1024 states,
respectively. While the use of a SAT solver is seemingly
more advantageous than that of a synthesis tool, the range
of problems which the SAT solver can handle is limited to
those with untimed specifications. Alternatively, specifica-
tions written in linear temporal logic and synthesized using
TuLiP can incorporate discrete-time specifications. Thus,
we can automatically generate control protocols that can
not only solve static configurations, but reason about how
to transition between environment configurations through a
series of contactor switches.

5. CONCLUSIONS AND EXTENSIONS
We have demonstrated techniques for synthesis of discrete-

variable, untimed and discrete-time control protocols. TuLiP
automata can also be converted into a continuous-time, con-
tinuous variable model view compatible with Simulink [12].
Future extensions will incorporate control protocols involv-
ing continuous-time and discrete-variables by converting syn-
thesized protocols into a compatible format for a timed model
checker such as UPPAAL [2]. We also plan to directly us-
ing the domain-specific language and tool to convert system
requirements into specifications for a timed synthesis tool,
such as UPPAAL-Tiga [4].

Further extensions include extending the domain-specific
language to include user-specific requirements that may not
be included in the high-level general specifications described
in this paper. In addition, we are also exploring the use
of this tool and language to distributed controller proto-
cols. Namely, how to distribute a given topology among
subsystems and generate interface specifications such that
the overall system is realizable. Lastly, the problem of sen-
sor placement and state estimation has been largely ignored
in current problem formulations.

6. ACKNOWLEDGMENTS
Funding was provided by the MultiScale Systems Cen-

ter (MuSyC). The authors would like to thank Rich Pois-
son from UTC Aerospace Systems, Ufuk Topcu, and Robert
Rogersten for their helpful discussions.

7. REFERENCES
[1] K. An, A. Trewyn, A. Gokhale, and S. Sastry.

Model-driven performance analysis of reconfigurable
conveyor systems used in material handling
applications. In Cyber-Physical Systems (ICCPS),
2011 IEEE/ACM International Conference on, pages
141 –150, April 2011.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Uppaal: a tool suite for automatic
verification of real-time systems. In R. Alur,
T. Henzinger, and E. Sontag, editors, Hybrid Systems
III, volume 1066 of LNCS, pages 232–243. Springer,
1996.

[3] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. View
consistency in architectures for cyber-physical
systems. In Cyber-Physical Systems (ICCPS), 2011
IEEE/ACM International Conference on, pages 151
–160, April 2011.

[4] F. Cassez, A. David, E. Fleury, K. G. Larsen, and
D. Lime. E�cient on-the-fly algorithms for the
analysis of timed games. In IN CONCUR 05, LNCS
3653, pages 66–80. Springer, 2005.

[5] B. Dutertre and L. D. Moura. The yices smt solver.
Technical report, 2006.

[6] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[7] R. Michalko. Electrical starting, generation,
conversion and distribution system architecture for a
more electric vehicle, 10 2008.

[8] I. Moir and A. Seabridge. Aircraft Systems:
Mechanical, Electrical and Avionics Subsystems
Integration. Aerospace Series. John Wiley & Sons,
2011.

[9] N. Ozay, U. Topcu, and R. M. Murray. Distributed
power allocation for vehicle management systems. In
CDC-ECE’11, pages 4841–4848, 2011.

[10] N. Piterman and A. Pnueli. Synthesis of reactive(1)
designs. In In Proc. Verification, Model Checking, and
Abstract Interpretation (VMCAI 06), pages 364–380.
Springer, 2006.

[11] A. Pnueli. The temporal logic of programs. In
Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46 –57, 31 1977-nov. 2 1977.

[12] R. Rogersten, H. Xu, N. Ozay, U. Topcu, , and R. M.
Murray. An aircraft electric power testbed for
validating automatically synthesized reactive control
protocols. In Proceedings of the 16th international
conference on Hybrid systems: computation and
control, HSCC ’13, submitted.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Formal synthesis of embedded control software:
Application to vehicle management systems.

[14] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and
R. M. Murray. Tulip: a software toolbox for receding
horizon temporal logic planning. In Proceedings of the
14th international conference on Hybrid systems:
computation and control, HSCC ’11, pages 313–314,
New York, NY, USA, 2011. ACM.

[15] H. Xu, U. Topcu, and R. M. Murray. Reactive
protocols for aircraft electric power distribution. In
CDC, 2012 IEEE International Conference on, 2012.

