
: A Software Toolbox for Receding Horizon

Temporal Logic Planning

Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M. Murray
California Institute of Technology, Pasadena, CA

{nok, utopcu, necmiye, mumu, murray}@cds.caltech.edu

ABSTRACT
This paper describes TuLiP, a Python-based software tool-
box for the synthesis of embedded control software that is
provably correct with respect to an expressive subset of lin-
ear temporal logic (LTL) specifications. TuLiP combines
routines for (1) finite state abstraction of control systems,
(2) digital design synthesis from LTL specifications, and
(3) receding horizon planning. The underlying digital de-
sign synthesis routine treats the environment as adversary;
hence, the resulting controller is guaranteed to be correct
for any admissible environment profile. TuLiP applies the re-
ceding horizon framework, allowing the synthesis problem to
be broken into a set of smaller problems, and consequently
alleviating the computational complexity of the synthesis
procedure, while preserving the correctness guarantee.

1. INTRODUCTION
To achieve higher levels of autonomy, modern embedded

control systems need to reason about complex, uncertain,
spatio-temporal environments and make decisions that en-
able complex missions to be accomplished safely and effi-
ciently. To this end, linear temporal logic (LTL) is widely
used as a specification language to precisely define system
correctness. The embedded control software needs to be
able to integrate discrete and continuous decision-making
and provide correctness guarantee with respect to a given
specification. Furthermore, since the environment may be
dynamic and unknown a priori, it is important that the con-
troller ensures proper response to all the admissible environ-
ment profiles.

Embedded control software synthesis has recently attracted
considerable attention. A common approach is to construct
a finite transition system that serves as an abstract model of
the physical system and synthesize a strategy, represented
by a finite state automaton, satisfying the given temporal,
logical properties based on this model. Software packages
that rely on this abstraction-based approach include LTL-
Con [2], Pessoa [4] and LTLMoP [3]. LTLCon handles affine
control systems and arbitrary LTL specifications. Pessoa

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC ’11 Chicago, Illinois USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

admits a more general class of systems, including nonlinear
and switched, but only a very limited class of LTL spec-
ifications. However, both of these tools do not take into
account the adversarial nature of the environment. Hence,
the controller is only provably correct with respect to an a
priori known and fixed environment. In contrast, LTLMoP
accounts for the adversarial nature of the environment but
only considers fully actuated systems operating in the Eu-
clidean plane. A sampling-based method has been proposed
for µ-calculus specifications [6]. Due to the nature of the
abstractions, this approach currently does not provide the
correctness guarantee for all the admissible environments.

This paper introduces TuLiP, a Python-based toolbox for
embedded control software synthesis. Similar to LTLMoP,
TuLiP models the environment as an adversary. However,
this often leads to the state explosion problem since all the
admissible environment profiles need to be taken into con-
sideration in the synthesis process. The novelty of TuLiP is
to integrate a receding horizon framework [10] to alleviate
the computational complexity of synthesis. Another exten-
sion is that TuLiP admits general affine control systems with
bounded disturbances.

2. FEATURES
The current version of TuLiP can be freely downloaded

from http://www.cds.caltech.edu/tulip. We now sum-
marize its two key features.

2.1 Embedded Control Software Synthesis
TuLiP deals with systems that comprise the plant, i.e.,

the physical component regulated by the controller, and the
potentially dynamic and unknown a priori environment in
which the plant operates. Note that the environment does
not only include the factors that are external to the plant
but it also includes the factors over which the system does
not have control, e.g., hardware failure. The plant may
contain both continuous (e.g. physical) and discrete (e.g.
computational) components. TuLiP models the embedded
control software synthesis problem as a game between the
plant and the environment. Given the model of the plant
and system specification ϕ in LTL, TuLiP provides a func-
tion that automatically synthesizes a controller that ensures
system correctness with respect to ϕ for any admissible en-
vironment, if such a controller exists (i.e., ϕ is realizable).
If ϕ is unrealizable, TuLiP also provides counter examples,
i.e., initial states starting from which the environment can
falsify ϕ regardless of controller’s actions.

The embedded control software synthesis feature relies on

2011 International Conference on Hybrid Systems: Computation and Control (HSCC)
http://www.cds.caltech.edu/~murray/papers/wtoxm11-hscc.html

(1) generating a proposition preserving partition of the con-
tinuous state space, (2) continuous state space discretization
based on the evolution of the continuous state, and (3) digi-
tal design synthesis. The algorithm for the continuous state
space discretization is explained in [9]. JTLV [1] is used as
the underlying digital design synthesis routine.

Currently, TuLiP handles the case where the continuous
state of the plant evolves according to discrete-time linear
time-invariant dynamics: for t ∈ {0, 1, 2, . . .},
s[t + 1] = As[t] + Bu[t] + Ed[t], u[t] ∈ U , d[t] ∈ D, s[0] ∈ S

where S ∈ Rn is the continuous state space, U ∈ Rm is
the set of admissible control inputs, D ∈ Rp is the set of
exogenous disturbances and s[t], u[t], d[t] are the continuous
state, the control signal and the exogenous disturbance, re-
spectively, at time t. U ,D,S are assumed to be bounded
polytopes.

The specification ϕ is assumed to be of the form

ϕ =
`
ψinit ∧ �ψe ∧

^

i∈If

��ψf,i

´
=⇒

`
�ψs ∧

^

i∈Ig

��ψg,i

´
,

known as General Reactivity[1]. Here ψinit, ψe, ψf,i, i ∈ If , ψs

and ψg,i, i ∈ Ig are propositional formulas. ψinit, ψe and
ψf,i, i ∈ If essentially describe the assumptions on the ini-
tial state of the system and the environment whereas ψs and
ψg,i, i ∈ Ig describe the desired behavior of the system. See
[10] for more details.

2.2 Receding Horizon Framework
For systems with a certain structure, the computational

complexity of the planner synthesis can be alleviated by solv-
ing the planning problems in a receding horizon fashion, i.e.,
compute the plan or strategy over a “shorter” horizon, start-
ing from the current state, implement the initial portion of
the plan, and recompute the plan. This approach essentially
reduces the planner synthesis problem into a set of smaller
problems. To ensure that this “receding horizon” strategy
preserves the desired system-level properties, certain suffi-
cient conditions need to be satisfied.

Given a specification in the form of ϕ above, TuLiP first
constructs a finite state abstraction of the physical system.
Then, for each i ∈ Ig, we organize the system states into
a partially ordered set Pi = ({Wi

j},�ψg,i) where Wi
0 are

the set of states satisfying ψg,i. For each j, we define a
short-horizon specification Ψi

j associated with Wi
j as

Ψi
j =

`
(ν ∈Wi

j) ∧ Φ ∧ �ψe ∧
V

k∈If
��ψf,k

´

=⇒
`
�ψs ∧ ��(ν ∈ F i(Wi

j)) ∧ �Φ
´
.

Here Φ is a propositional formula that describes receding
horizon invariants and F i : {Wi

j} → {Wi
j} defines the in-

termediate goal for starting in Wi
j . Let V be the entire

state space of the system. As described in [10], a sufficient
condition for the receding horizon strategy to lead to cor-
rect execution with respect to ϕ is that for all i ∈ Ig, (1)
Wi

0 ∪Wi
1 ∪ . . . ∪Wi

p = V, (2) Wi
0 ≺ψg,i Wi

j , ∀j �= 0, (3)

F i(Wi
j) ≺ψg,i Wi

j , ∀j �= 0, (4) ψinit =⇒ Φ is a tautology,

and (5) Ψi
j is realizable ∀j.

Given the model of the plant, the original specification ϕ,
{Wi

j}, F i and Φ, TuLiP automatically constructs the short
horizon specification Ψi

j for each i, j. It also provides func-
tions for (1) verifying that there exists a partial order �ψg,i

and that the sufficient condition above is satisfied and (2)
automatically computing the receding horizon invariant Φ if
one exists or report an error otherwise.

3. APPLICATIONS AND DISCUSSIONS
We have demonstrated the successful applications of TuLiP

in multiple applications, including autonomous driving [8],
vehicle management systems in avionics [11] and multi-target
tracking. Other simpler examples are included in the current
release of the toolbox. For the autonomous driving prob-
lem, the receding horizon framework needs to be applied
for the car to be able to drive a reasonable distance. Due
to the state explosion problem, TuLiP cannot automatically
find the receding horizon invariant Φ for this specific ap-
plication. Nevertheless, it provides useful guidelines for the
user to easily manually construct Φ. Once Φ is constructed,
TuLiP successfully checks that the sufficient condition for
applying the receding horizon strategy is satisfied.

Currently, TuLiP constructs Φ roughly by starting with
Φ = True and iterating between (1) checking the realizabil-
ity of each Ψi

j , and (2) updating Φ to be the conjunction
of current Φ and the negation of the counter examples of
unrealizable Ψi

j . This process stops when ψinit =⇒ Φ is
no longer a tautology or all the Ψi

j are realizable. Since the
counter examples are given as the enumeration of all the in-
feasible initial states, the size of Φ quickly increases, leading
to the state explosion problem. An extension of the current
version of TuLiP is to implement a procedure for reducing
the counter examples into a small formula. We also plan to
integrate various existing software packages into TuLiP in-
cluding a user-friendly simulation environment such as Play-
er/Stage [5] and a state space discretization procedure that
admits a more general class of systems (e.g. one based on
approximate simulations and bisimulations as discussed in
[7] and implemented in [4]).

4. REFERENCES
[1] JTLV. http://jtlv.sourceforge.net.
[2] LTLCon.

http://iasi.bu.edu/~software/LTL-control.htm.
[3] LTLMoP. http://code.google.com/p/ltlmop.
[4] Pessoa. http://www.cyphylab.ee.ucla.edu/pessoa.
[5] Player/Stage. http://playerstage.sourceforge.net.
[6] S. Karaman and E. Frazzoli. Sampling-based motion

planning with deterministic µ-calculus specifications.
In Proc. of the Conf. on Decision and Control, 2009.

[7] P. Tabuada. Verification and Control of Hybrid

Systems: A Symbolic Approach. Springer, 2009.
[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray.

Receding horizon temporal logic planning for
dynamical systems. In Proc. of the Conf. on Decision

and Control, 2009.
[9] T. Wongpiromsarn, U. Topcu, and R. M. Murray.

Automatic synthesis of robust embedded control
software. In Proc. AAAI Spring Symposium on

Embedded Reasoning: Intelligence in Embedded

Systems, pp. 104–111, 2010.
[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray.

Receding horizon control for temporal logic
specifications. In K. H. Johansson and W. Yi, editors,
HSCC, pp. 101–110, ACM, 2010.

[11] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Formal synthesis of embedded control software:
Application to vehicle management systems. In Proc.

AIAA Infotech@Aerospace, 2011. submitted.

