
Optimization-based Control of Nonlinear Systems with Linear
Temporal Logic Specifications

Eric M. Wolff, Ufuk Topcu, and Richard M. Murray

Abstract— We present a mathematical programming-based
method for optimal control of discrete-time nonlinear systems
subject to temporal logic task specifications. We use linear
temporal logic (LTL) to specify a wide range of properties and
tasks, such as safety, progress, response, surveillance, repeated
assembly, and environmental monitoring. Our method directly
encodes an LTL formula as mixed-integer linear constraints on
the continuous system variables, avoiding the computationally
expensive processes of creating a finite abstraction of the system
and a Büchi automaton for the specification. In numerical
experiments, we solve temporal logic motion planning tasks for
high-dimensional (more than 10 continuous states) dynamical
systems.

I. INTRODUCTION

We are motivated by safety-critical robotics applications
involving autonomous ground and air vehicles carrying out
complex tasks. In this context, it is desirable to unambigu-
ously specify the desired system behavior and automatically
synthesize a controller that provably implements this be-
havior. Additionally, autonomous systems often have high-
dimensional, nonlinear dynamics and require efficient (not
just feasible) controllers.

Linear temporal logic (LTL) is an expressive task-
specification language for specifying a variety of tasks such
as responding to the environment, visiting goals, periodi-
cally monitoring areas, staying safe, and remaining stable.
These properties generalize classical point-to-point motion
planning. LTL is also promising as a common language for
reasoning about the software and dynamics of autonomous
systems, due to the widespread use of LTL in software
verification [4].

Standard methods for motion planning with LTL task
specifications first create a finite abstraction of the original
dynamical system (see [2], [5], [15], [21]). This abstraction
can informally be viewed as a labeled graph that represents
possible behaviors of the system. Given a finite abstraction
of a dynamical system and an LTL specification, controllers
can be automatically constructed using an automata-based
approach [4], [8], [11], [15]. The main drawbacks of this
approach are: 1) it is expensive to compute a finite abstrac-
tion, and 2) the size of the automaton may be exponential in
the length of the specification.

Instead of the automata-based approach, we directly en-
code an LTL formula as mixed-integer linear constraints on

Eric M. Wolff and Richard M. Murray are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA.
Ufuk Topcu is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA. The corresponding author is
ewolff@caltech.edu

the original dynamical system. We enforce that an infinite
sequence of system states satisfies the specification with a
finite number of constraints on a bounded length trajectory
parameterization. This is possible by enforcing that the
system’s trajectory is eventually periodic, i.e., it contains a
loop. The loop assumption is motivated by the use of “lassos”
in LTL model checking of finite, discrete systems [4]. This
direct encoding of the LTL formula avoids the potentially
expensive computations of a finite abstraction of the system
and a Büchi automaton for the specification.

Our approach applies to any deterministic system model
that is amenable to finite-dimensional optimization, as the
temporal logic constraints are independent of any particular
system dynamics or cost functions. We demonstrate our
approach on mixed logical dynamical (MLD) systems [6],
whose dynamics can be encoded with mixed-integer linear
constraints. MLD systems include constrained linear sys-
tems, linear hybrid automata, and piecewise affine systems.

Our work extends the bounded model checking paradigm
for finite, discrete systems [9] to nonlinear dynamical sys-
tems. In bounded model checking, one searches for coun-
terexamples (i.e., trajectories) of a fixed length by transform-
ing the problem into a Boolean satisfiability (SAT) problem.
This approach was extended to hybrid systems in [13] by
first computing a finite abstraction of the system, and then
using a SAT solver for the resulting discrete problem. Hybrid
systems are also considered in [3], [12], where SAT solvers
are extended to reason about linear inequalities. In contrast
to the above work, we consider a larger class of dynamics
and use mixed-integer linear programming techniques.

Mixed-integer linear programming has been used for tra-
jectory generation for continuous systems with finite-horizon
LTL specifications in [14] and [16]. However, finite-horizon
properties are too restrictive to model a large class of inter-
esting robotics problems, including persistent surveillance,
repeated assembly, periodic motion, and environmental mon-
itoring. A fragment of LTL that includes periodic properties
is encoded with mixed-integer linear constraints in [20]. We
generalize these results by encoding all LTL properties using
mixed-integer linear constraints.

Our main contributions are a novel method for encod-
ing LTL specifications as mixed-integer linear constraints
on a dynamical system. This generalizes previous Boolean
satisfiability encodings of LTL formulas for finite, discrete
systems. Our mixed-integer encoding works for any LTL for-
mula, as opposed to previous approaches that only consider
finite-horizon properties. Our encoding is also efficient; it
requires a number of variables linear in the length of the tra-

Submitted, 2014 Internatioanl Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/wtm14-icra.html

jectory, instead of quadratic as in previous approaches [14].
We demonstrate how our mixed-integer programming for-
mulation can be used with off-the-shelf optimization solvers
(e.g. CPLEX [1]) to compute both feasible and optimal
controllers for high-dimensional systems with temporal logic
specifications.

II. PRELIMINARIES

An atomic proposition is a statement that is either True or
False . A propositional formula is composed of only atomic
propositions and propositional connectives, i.e., ∧ (and), ∨
(or), and ¬ (not).

A. System model
We consider discrete-time nonlinear systems of the form

x
t+1 = f(xt

, u
t

), (1)

where t = 0,1, . . . are the time indices, x ∈ X ⊆ (Rnc ×{0,1}nl) are the continuous and binary states, u ∈ U ⊆(Rmc × {0,1}ml) are the control inputs, and x0 ∈ X is the
initial state.

Let AP be a finite set of atomic propositions. The labeling
function L ∶ X → 2

AP maps the continuous part of each state
to the set of atomic propositions that are True . The set of
states where atomic proposition p holds is denoted by [[p]].

A run (trajectory) x = x0x1x2 . . . of system (1) is an
infinite sequence of its states, where x

t

∈ X is the state of
the system at index t and for each t = 0,1, . . ., there exists
a control input u

t

∈ U such that x
t+1 = f(xt

, u
t

). A word is
an infinite sequence of labels L(x) = L(x0)L(x1)L(x2) . . .
where x = x0x1x2 . . . is a run. Given an initial state x0 and
a control input sequence u, the resulting run x = x(x0, u) is
unique.

B. Linear temporal logic
We use linear temporal logic (LTL) to concisely and

unambiguously specify the desired system behavior [4].
LTL allows the specification of safety, guarantee, liveness,
response, and stability properties which generalize traditional
point-to-point motion planning [17].
Syntax: LTL is built from (a) a set of atomic propositions
AP , (b) Boolean operators: ¬ (negation), ∧ (conjunction),
and ∨ (disjunction), and (c) temporal operators: # (next), U
(until), and R (release). An LTL formula in positive normal
form (negation normal form) is defined by the following
grammar:

' ∶∶= p � ¬p � '1 ∧'2 � '1 ∨'2 � #' � '1 U '2 � '1 R '2,

where p ∈ AP is an atomic proposition.
Every LTL formula can be rewritten in positive normal

form, where all negations only appear in front of atomic
propositions [4]. The following rules transform a given LTL
formula into an equivalent LTL formula in positive normal
form: ¬True = False , ¬¬' = ', ¬('1∧'2) = ¬'1∨¬'2, ¬#
' = #¬', and ¬('1 U '2) = ¬'1 R ¬'2. An LTL formula
' of size �'� can always be rewritten as a formula '′ in
positive normal form of size �'′� = O(�'�) [4].

The standard Boolean operators �⇒ (implication) and⇐⇒ (equivalency) can be defined as p �⇒ q = ¬p ∨ q
and p ⇐⇒ q = (p �⇒ q) ∧ (q �⇒ p), respectively.
Commonly used abbreviations for LTL formulas are the
derived temporal operators � = True U (eventually),� = ¬�¬ (always), �� (always eventually), and ��
(eventually always).
Semantics: The semantics of an LTL formula is defined
over an infinite sequence of states x = x0x1x2 Let
x

i

= x
i

x
i+1xi+2 . . . denote the run x from position i. The

semantics are defined inductively as follows:

x

i

� p iff p ∈ L(x
i

)
x

i

� ¬p iff x
i

�� p
x

i

� 1 ∨ 2 iff x
i

� 1 ∨ xi

� 2

x

i

� 1 ∧ 2 iff x
i

� 1 ∧ xi

� 2

x

i

� # iff x
i+1 �

x

i

� 1 U 2 iff ∃j ≥ i s.t. x
j

� 2 and x

n

� 1∀i ≤ n < j
x

i

� 1 R 2 iff ∀j ≥ i ∶ x
j

� 2 or x
n

� 1∃i ≤ n < j.
Informally, the notation #' means that ' is true at the

next step, �' means that ' is always true, �' means that
' is eventually true, � � ' means that ' is true infinitely
often, and ��' means that ' is eventually always true [4].

Definition 1. A run x = x0x1x2 . . . satisfies ', denoted by
x � ', if x0 � '.

III. PROBLEM STATEMENT

In this section, we formally state both a feasibility and an
optimization problem and give an overview of our solution
approach. Let ' be an LTL formula defined over AP .

Problem 1. Given a system of the form (1) and an LTL
formula ', compute a control input sequence u such that
x(x0,u) � '.

To distinguish among all trajectories that satisfy Prob-
lem 1, we introduce a generic cost function J(x,u) that
maps trajectories and control inputs to R ∪∞.

Problem 2. Given a system of the form (1) and an LTL
formula ', compute a control input sequence u such that
x(x0,u) � ' and J(x(x0,u),u) is minimized.

We now briefly overview our solution approach. We rep-
resent the system trajectory as a finite sequence of states.
Infinite executions of the system are captured by enforcing
that a loop occurs in this sequence, making the trajectory
eventually periodic. We then encode an LTL formula as
mixed-integer linear constraints on this finite trajectory pa-
rameterization in Section IV-B. Additionally, both dynamic
constraints (see Section IV-B.3) and a cost function can
also be included as part of the mixed-integer optimization
problem. For mixed logical dynamical (or piecewise affine)
systems with linear costs, Problems 1 and 2 can thus be
solved using a mixed-integer linear program (MILP) solver.
While even checking feasibility of a MILP is NP-hard,
modern solvers using branch and bound methods routinely

solve large problems [1]. We give results on systems with
more than 10 continuous states in Section V.

Remark 1. We only consider open-loop trajectory gener-
ation, which is already a challenging problem due to the
LTL specifications and nonlinear dynamics. Incorporating
disturbances during trajectory generation is the subject of
future work.

IV. SOLUTION

We build on the work in bounded model checking of
finite, discrete systems [9], and extend it to dynamical
systems using mixed-integer programming. Our presentation
and notation follows that of [10].

We will search for a trajectory of length k that satisfies '.
Although a satisfying trajectory for an LTL formula describes
an infinite sequence of states, an infinite sequence can be
captured by a finite trajectory that has a loop. Note that this
approach is conservative for systems of the form (1) due
to both the bounded trajectory length k and the assumption
that the trajectory is eventually periodic. This is in contrast
to finite systems, where the assumption that the trajectory is
eventually periodic is without loss of generality.

Definition 2. A run x is a (k, l)-loop if x =(x0x1 . . . xl−1)(xl

. . . x
k

)! such that 0 < l ≤ k and x
l−1 = xk

,
where ! denotes infinite repetition.

Definition 3. Given a run x and a bound k ∈ N, x �
k

' iff
x is a (k, l)-loop for some 0 < l ≤ k and x0 � '.

For a bounded trajectory length k, Problems 1 and 2,
with x � ' replaced by x �

k

', can be represented as a
finite-dimensional mixed-integer program. We will build a
set [[M,', k]] of mixed-integer constraints that is satisfiable
if and only if a trajectory of length k exists for system M
that satisfies '. The satisfiability of these constraints can
then be checked with a mixed-integer programming solver.
In the following sections, we will describe the construction
of the loop constraints, the LTL constraints, and the system
constraints. However, we first detail how to relate the con-
tinuous state to the set of valid atomic propositions.

Remark 2. Our results can be extended to the bounded
semantics for LTL, i.e., the no-loop case, as detailed in [10].

A. Representing the labels

We now relate the state of a system to the set of atomic
propositions that are True at each time instance. We as-
sume that each propositional formula is described by the
Boolean combination of a finite number of halfspaces. Our
approach here is standard, see e.g., [6].

1) Halfspace representation: We will give a necessary
and sufficient condition on a state x

t

being in a halfspace
H = {x ∈ X � hTx

t

≤ k} at time t. This can be extended to
unions of polyhedra using conjunctions and disjunction as
detailed in Section IV-A.2.

We introduce binary variables z
t

∈ {0,1} for time indices
t = 0, . . . , k. We enforce that z

t

= 1 if and only if hTx
t

≤ k

with the following constraints

hTx
t

≤ k +M
t

(1 − z
t

),
hTx

t

> k −M
t

z
t

+ ✏,
where M

t

are large positive numbers and ✏ is a small positive
number. Note that z

t

= 1 if and only if the state is in the
halfspace H at time t (with precision ✏ on the boundary).

2) Boolean operations: In this section, we encode¬ (negation), ∧ (conjunction), and ∨ (disjunction) of proposi-
tions using mixed-integer linear constraints. We assume that
each proposition p has a corresponding variable (binary or
continuous) P p

t

which equals 1 if p is True at time t, and
equals 0 otherwise. We will use new continuous variables
P
t

∈ [0,1] to represent the resulting propositions. In each
case, P

t

= 1 if holds at time t and P
t

= 0 otherwise.
The negation of proposition p, i.e., = ¬p, is modeled for

t = 0, . . . , k as

P
t

= 1 − P p

t

.

The conjunction of propositions p
i

for i = 1, . . . ,m, i.e.,
 = ∧m

i=1pi, is modeled for t = 0, . . . , k as

P
t

≤ P pi
t

, i = 1, . . . ,m,

P
t

≥ 1 −m + m�
i=1

P pi
t

The disjunction of propositions p
i

for i = 1, . . . ,m, i.e.,
 = ∨m

i=1pi, is modeled for t = 0, . . . , k as

P
t

≥ P pi
t

, i = 1, . . . ,m,

P
t

≤ m�
i=1

P pi
t

.

B. A mixed-integer encoding of LTL
We now encode Problem 1 as a set [[M,', k]] of mixed-

integer linear constraints, which includes loop constraints,
LTL constraints, and system constraints. Problem 2 uses the
same constraint set [[M,', k]], with the addition of a cost
function defined over the (k, l)-loop.

1) Loop constraints: The loop constraints are used to
determine where a loop is formed in the system trajectory.
We introduce k binary variables l1, . . . , lk which determine
where the trajectory loops. These are constrained so that only
one loop selector variable is allowed to be True , and if l

j

is True , then x
j−1 = xk

. These constraints are enforced by∑k

i=1 li = 1 and

x
k

≤ x
j−1 +Mj

(1 − l
j

), j = 1, . . . , k,
x
k

≥ x
j−1 −Mj

(1 − l
j

), j = 1, . . . , k,
where M

j

are large positive numbers.
2) LTL constraints: Given a formula ', we denote the

satisfaction of ' at position i by [[']]
i

. The variable[[']]
i

∈ {0,1} corresponds to an appropriate set of mixed-
integer linear constraints so that [[']]

i

= 1 if and only if '
holds at position i. We recursively generate the mixed-integer
constraints corresponding to [[']]0 to determine whether or
not a formula ' holds in the initial state, i.e., if [[']]0 = 1.

In this section, we use the encoding of the U and R
temporal operators from [10] for Boolean satisfiability. We
directly link their satisfiability encoding to the continuous
system state through the mixed-integer linear constraints
that were described in Section IV-A. This encoding first
computes an under-approximation for U and an over-
approximation for R with the auxiliary encoding ��⋅��. The
under-approximation of '1 U '2 assumes that '2 does not
hold in the successor of state x

k

. The over-approximation
of '1 R '2 assumes that '2 holds in the successor of state
x
k

. These approximations are then refined to exact values
by [[⋅]]. The encoding is recursively defined over an LTL
formula, where there is a case for each logical and temporal
connective.

The reader might wonder why an auxiliary encoding is
necessary. A seemingly straightforward approach for U
is to use the textbook identity (see [4]) [[1 U 2]]i =[[2]]i ∨ ([[1]]i ∧ [[1 U 2]]i+1) for i = 0, . . . , k, where
index k + 1 is replaced by an appropriate index to form
a loop. However, this approach can lead to circular rea-
soning. Consider a trajectory consisting of a single state
with a self loop, and the LTL formula True U , i.e., �
(eventually). The corresponding encoding is [[True U]]0 =[[]]0 ∨ [[True U]]0. This can be trivially satisfied by
setting [[True U]]0 equal to 1, regardless of whether or
not is visited. The auxiliary encoding prevents this circular
reasoning, as detailed in [10].

We first define the encoding of propositional formulas as

[[]]
i

= P
i

,

[[¬]]
i

= P ¬
i

,

[[1 ∧ 2]]i = [[1]]i ∧ [[2]]i,[[1 ∨ 2]]i = [[1]]i ∨ [[2]]i,
for i = 0, . . . , k, where these operations were defined in
Section IV-A for mixed-integer linear constraints.

Next, we define the auxiliary encodings of U and R .
The until (release) formulas at k use the auxiliary encoding�� 1 U 2��j(�� 1 R 2��j) at the index j where the loop is
formed, i.e., where l

j

holds. The auxiliary encoding of the
temporal operators is

�� 1 U 2��i = [[2]]i ∨ ([[1]]i ∧ �� 1 U 2��i+1),�� 1 R 2��i = [[2]]i ∧ ([[1]]i ∨ �� 1 R 2��i+1),
for i = 1, . . . , k − 1, and is

�� 1 U 2��i = [[2]]i,�� 1 R 2��i = [[2]]i,
for i = k.

Finally, we define the encoding of the temporal operators
as

[[#]]
i

= [[]]
i+1,[[1 U 2]]i = [[2]]i ∨ ([[1]]i ∧ [[1 U 2]]i+1),[[1 R 2]]i = [[2]]i ∧ ([[1]]i ∨ [[1 R 2]]i+1),

for i = 0, . . . , k − 1, and as

[[#]]
i

= k�
j=1(lj ∧ [[]]j),

[[1 U 2]]i = [[2]]i ∨ ([[1]]i ∧ (k�
j=1(lj ∧ �� 1 U 2��j))),

[[1 R 2]]i = [[2]]i ∧ ([[1]]i ∨ (k�
j=1(lj ∧ �� 1 R 2��j))),

for i = k.
We also explicitly give the encodings for safety, per-

sistence, and liveness formulas. These formulas frequently
appear in specifications and can be encoded more efficiently
than the general approach just described.

A safety formula � can be encoded as

[[�]]
i

= [[]]
i

∧ [[�]]
i+1, i = 0, . . . , k − 1

[[�]]
k

= [[]]
k

.

An auxiliary encoding is not necessary here, as noted in [10].
Due to the loop structure of the trajectory, both persistence

and liveness properties either hold at all indices or no indices.
We encode a persistence �� and liveness �� formulas
as

[[��]] = k�
i=1�li ∧

k�
j=i[[]]j� ,

[[��]] = k�
i=1�li ∧

k�
j=i[[]]j� ,

for i = 0, . . . , k. Although the encodings for persistence and
liveness appear to require a number of variables that are
quadratic in k, one can share subformulas to make this linear
in k [9].

3) System constraints: The system constraints encode
valid trajectories of length k for a system of the form (1),
i.e., they hold if and only if trajectory x(x0, u) satisfies the
constraints in equation (1) for t = 0,1, . . . , k.

System constraints, e.g., the dynamics in equation (1), can
be encoded on the sequence of states using standard tran-
scription methods [7]. However, the resulting optimization
problem may then be a mixed-integer nonlinear program due
to the dynamics.

A useful class of nonlinear systems where the dynamics
can be encoded using mixed-integer linear constraints are
mixed logical dynamical (MLD) systems. MLD systems
can model nonlinearities, logic, and constraints [6]. These
include constrained linear systems, linear hybrid automata,
and piecewise affine systems.

The intersection of the LTL constraints, the system con-
straints, and the loop constraints gives the full mixed-integer
linear encoding of the bounded model checking problem, i.e.,[[M,', k]]. Problem 1 is solved by checking the feasibility
of this set using a MILP solver (assuming the dynamics are
mixed logical dynamical). Similarly, Problem 2 is solved by
optimizing over this set using a MILP solver (assuming the
cost function is linear). More general dynamics and cost
functions can be included by using an appropriate mixed-
integer solver.

Fig. 1. Illustration of the environment for the reach-avoid scenario. The goal
is labeled G and dark regions are obstacles. A representative trajectory for
the “chain-6” model is shown, where we additionally minimized an additive
cost function with cost c(xt, ut) = �ut� accrued at each time index.

C. Complexity

The main source of complexity of our approach comes
from the number of binary variables needed to relate the
satisfaction of an atomic proposition to the continuous state
of the system. A binary variable is introduced at each
time index for each halfspace. If n

h

halfspaces are used to
represent the atomic propositions used in the LTL formula
at each time index, then O(k ⋅ n

h

) binary variables are
introduced.

Continuous variables are used to represent the propositions
introduced during the encoding of the LTL formula. The
number of continuous variables used is O(k ⋅ �'�), where
k is the bound length and �'� is the length of the for-
mula. This linear dependence on k improves on the the
quadratic dependence on k in [14]. Finally, although the loop
constraints introduce k additional binary variables, they are
constrained such that only one is active. In summary, our
mixed-integer linear encoding of an LTL formula ' requires
the use O(k ⋅n

h

) binary variables and O(k ⋅ �'�) continuous
variables.

V. EXAMPLES

We consider two LTL motion planning problems for
different system models. We demonstrate our techniques on
a chain of integrators model, a quadrotor model from [19],
and a nonlinear car-like vehicle with drift. All computations
are done on a laptop with a 2.4 GHz dual-core processor
and 4 GB of memory using CPLEX [1] through Yalmip [18].
All continuous-time models are discretized using a first-order
hold.

Our first example is a simple reach-avoid motion planning
scenario (see Figure 1), which we use to directly compare our
encoding of the until operator (U) with that given in [14].
The task here is to remain in the safe region S until the

Fig. 2. Illustration of the environment for the surveillance scenario.
The goals are labeled A, B, C, and D. Dark regions are obstacles.
A representative trajectory for the quadrotor model is shown, where we
additionally minimized an additive cost function with cost c(xt, ut) = �ut�
accrued at each time index.

goal region G is reached. The corresponding LTL formula is
' = S U G. We show that our formulation scales better with
respect to the trajectory length k. This is anticipated, as our
encoding of U requires a number of variables linear in k,
while the encoding in [14] requires a number of variables
quadratic in k. For this example, all results are averaged
over ten randomly generated environments where 75 percent
of the area is safe (labeled S), i.e., the remaining regions are
obstacles.

The second example is motivated by a surveillance mis-
sion. Let A, B, C, and D describe regions of interest in a
planar planning space that must be repeatedly visited (see
Figure 2). The robot must remain in the safe region S (in
white) and either visit regions A and B repeatedly or visit
regions C and D repeatedly. Formally, the task specification
is ' = �S ∧ ((��A ∧ ��B) ∨ (��C ∧ ��D)). This
formula is recursively parsed according to the grammar in
Section II-B and encoded as mixed-integer linear constraints
as described in Section IV-B. For this example, all results are
averaged over five randomly generated environments where
85 percent of the area is safe, i.e., the remaining regions are
obstacles. The length of the trajectory is k = 25.

A. Chain of integrators

The first system is a chain of orthogonal integrators in
the x and y directions. The k-th derivative of the x and y
positions are controlled, i.e., x(k) = u

x

and y(k) = u
y

. The
control input constraints are �u

x

� ≤ 0.5 and �u
y

� ≤ 0.5. The
state constraints are �x(i)� ≤ 1 and �y(i)� ≤ 1 for i = 1, . . . , k−
1. Results are given in Figure 4 under “chain-2,” “chain-
6,” and “chain-10,” where “chain-k” indicates that the k-th
derivative in both the x and y positions are controlled.

Fig. 3. Solver time (mean ± standard error) to compute a feasible control
input for the reach-avoid example with our approach and the approach
in [14].

B. Quadrotor

We now consider the quadrotor model used in [19],
to which we refer the reader for details. The state x =(p, v, r,w) is 10-dimensional, consisting of position p ∈ R3,
velocity v ∈ R3, orientation r ∈ R2, and angular velocity
w ∈ R2. This model is the linearization of a nonlinear model
about hover, and with the yaw constrained to be zero. The
control input u ∈ R3 is the total, roll, and pitch thrust.
Results are given in Figure 4 under “quadrotor,” and a sample
trajectory is shown in Figure 2.

C. Nonlinear car

Finally, we consider a nonlinear car-like vehicle with state
x = (p

x

, p
y

, ✓) and dynamics ẋ = (v cos(✓), v sin(✓), u). The
variables p

x

, p
y

are position (m) and ✓ is orientation (rad).
The vehicle’s speed v is fixed at 1 (m/s) and its control input
is constrained as �u� ≤ 2.5.

We form a hybrid mixed logical dynamical model by
linearizing the system about different orientations ˆ✓

i

for
i = 1, . . . , k. The dynamics are governed by the closest
linearization to the current ✓. Results with k = 4 are are
given in Figure 4 under “car-4.”

D. Discussion

The results for the first example are presented in Figure 3,
where we used the “chain-2” and “chain-6” models. Our en-
coding of the key U temporal operator scaled significantly
better than a previous approach, likely due to the fact that
our encoding is linear in the trajectory length k, while the
previous encoding was quadratic in k.

The results for the surveillance example are presented in
Figure 3. Due to the periodic nature of these tasks, the
approaches presented in [14] and [16] are not applicable.
We were able to quickly compute trajectories that satisfied
periodic temporal tasks for systems with more than 10

Fig. 4. Solver (1) and total (2) time (mean ± standard error) to compute
a feasible control input for various system models for the surveillance
example.

continuous states. The total time was dominated by prepro-
cessing in Yalmip, and we expect that this can be reduced
close to the solver time with a dedicated implementation.

Finally, we compared our mixed-integer linear program-
ming approach to a reachability-based algorithm that com-
putes a finite abstraction of a continuous system [22]. This
method took 22 seconds to compute a discrete abstraction
for a simple kinematic system (i.e., “chain-1”). In contrast,
our mixed-integer approach finds solutions to LTL motion
planning problems for these systems in a few seconds.
Abstraction-based approaches scale poorly as the dimension
increases, and cannot currently solve problems with more
than a handful of dimensions. Our approach is also promising
for situations where the environment is dynamically chang-
ing and it would be prohibitively expensive to repeatedly
compute a finite abstraction.

VI. CONCLUSIONS

We presented a mixed-integer programming-based method
for optimal control of nonlinear systems subject to linear
temporal logic task specifications. We directly encoded an
LTL formula as mixed-integer linear constraints on contin-
uous system variables, which avoiding the computationally
expensive processes of creating a finite abstraction of the
system and creating a Büchi automaton for the specification.
We solved LTL motion planning tasks for dynamical systems
with more than 10 continuous states, and showed that our
encoding of the until operator theoretically and empirically
improves on previous work.

Directions for future work include directly encoding met-
ric and past operators, exploiting incremental computation
for varying bounds k, and performing a more detailed
comparison of mixed-integer linear programming solvers and
Boolean satisfiability solvers that have been extended to
support linear operations, e.g., [12].

ACKNOWLEDGEMENTS

This work was supported by an NDSEG fellowship, the
Boeing Corporation, AFOSR award FA9550-12-1-0302, and
ONR award N00014-13-1-0778.

REFERENCES

[1] User’s Manual for CPLEX V12.2. IBM, 2010.
[2] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete

abstractions of hybrid systems. Proc. IEEE, 88(7):971–984, 2000.
[3] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying

industrial hybrid systems with MathSAT. Electronic Notes in Theo-
retical Computer Science, 119:17–32, 2005.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[5] C. Belta and L. C. G. J. M. Habets. Controlling of a class of nonlinear
systems on rectangles. IEEE Trans. on Automatic Control, 51:1749–
1759, 2006.

[6] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35:407–427, 1999.

[7] J. T. Betts. Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, 2nd edition. SIAM, 2000.

[8] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi. Motion plan-
ning with complex goals. IEEE Robotics and Automation Magazine,
18:55–64, 2011.

[9] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. of TACAS, 1999.

[10] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear
encodings of bounded LTL model checking. Logical Methods in
Computer Science, 2:1–64, 2006.

[11] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45:343–352,
2009.

[12] M. Fränzle and C. Herde. Efficient proof engines for bounded model
checking of hybrid systems. Electronic Notes in Theoretical Computer
Science, 133:119–137, 2005.

[13] N. Giorgetti, G. J. Pappas, and A. Bemporad. Bounded model checking
of hybrid dynamical systems. In Proc. of IEEE Conf. on Decision and
Control, 2005.

[14] S. Karaman, R. G. Sanfelice, and E. Frazzoli. Optimal control of mixed
logical dynamical systems with linear temporal logic specifications. In
Proc. of IEEE Conf. on Decision and Control, pages 2117–2122, 2008.

[15] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from temporal logic specifications. IEEE Trans. on
Automatic Control, 53(1):287–297, 2008.

[16] Y. Kwon and G. Agha. LTLC: Linear temporal logic for control. In
Proc. of HSCC, pages 316–329, 2008.

[17] S. M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.
[18] J. Löfberg. YALMIP : A toolbox for modeling and optimization in

MATLAB. In Proc. of the CACSD Conference, Taipei, Taiwan, 2004.
Software available at http://control.ee.ethz.ch/∼joloef/yalmip.php.

[19] D. J. Webb and J. van den Berg. Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics. In Proc. of
IEEE Int. Conf. on Robotics and Automation, 2013.

[20] E. M. Wolff and R. M. Murray. Optimal control of mixed logical
dynamical systems with long-term temporal logic specifications. Tech-
nical report, California Institute of Technology, 2013.

[21] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning. IEEE Trans. on Automatic Control, 2012.

[22] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray.
TuLiP: A software toolbox for receding horizon temporal logic plan-
ning. In Proc. of Int. Conf. on Hybrid Systems: Computation and
Control, 2011. http://tulip-control.sf.net.

