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Abstract— We develop a method to synthesize control policies
for discrete-time nonlinear dynamical systems subject to tem-
poral logic specifications. Our approach uses an approximate
abstraction of the system along with an automaton representing
the temporal logic specification to guide the search for a feasible
control policy. This approach decomposes the search for a
feasible control policy into a series of constrained reachability
problems, and can thus be applied to any system for which
(possibly approximate) solutions to constrained reachability
problems are computable. Examples of methods for solving con-
strained reachability problems include sampling-based methods
for motion planning, reachable set computations for linear
systems, and graph search for finite discrete systems. Our
approach does not necessarily require discretization of the
system as commonly done in the literature, and is simple to
implement in a parallel manner. We demonstrate our approach
on Mixed Logical Dynamical (piecewise affine) systems and give
simulation results for robotic motion planning problems.

I. INTRODUCTION

We consider the problem of automatically creating con-
trol policies for discrete-time nonlinear hybrid systems that
are constrained by temporal logic specifications. We are
motivated by safety-critical applications in robotics, e.g.,
autonomous driving and air traffic management, that have
non-trivial dynamics and system behaviors (e.g. safety, re-
sponse, persistence, recurrence, and guarantee) that can be
represented by temporal logic. Our approach uses a coarse
approximation of the system along with the logical spec-
ification to guide the computation constrained reachability
problems only as needed to create a control policy.

Feasible control policies can be automatically created
for a variety of dynamical systems and temporal logic
specifications [1]–[3]. Figure 1) shows an example of what
such a control policy and specification might look like.
These methods require the construction of a finite discrete
abstraction of the dynamical system. An abstraction of a
system is a partition of the continuous state space into a
finite number of abstract states, i.e., sets of system (concrete)
states. Finite abstractions are typically expensive to compute
and conservative (see [1]–[7]).

Instead of blindly doing expensive reachability compu-
tations to construct an abstraction of a system, we guide
reachability computations on the system according to the
task specification. This general idea was first introduced
as counterexample-guided abstraction refinement (CEGAR)
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Fig. 1. Sketch of a system trajectory (induced by a control policy) satisfying
the temporal logic specification ' =�A ∧ ��B ∧ ��C ∧ �S.

in [8] and extended to hybrid systems in [9], [10]. An
abstract model of the system is first created and checked
to see if the specification holds. If the check fails, then the
abstraction is refined based on a counterexample generated
during the check. This counterexample corresponds to a
feasible control policy in our context. Lazy abstraction [11]
optimizes this process by abstracting the system at different
levels. Supervisory controllers for hybrid systems are created
in [12]. Our approach is different in that we associate weights
with the abstraction and use this to update a ranking of
promising discrete plans.

Our work is also related to that on combining task and
motion planning [1], [13]–[18]. These approaches first com-
pute a discrete plan and then use sampling-based motion
planning techniques to determine if this plan is feasible for
the system dynamics. This idea is applied to finite-time LTL
properties in [1], [15], [16], [19]. Our work is different in
that we consider a wider range of methods of computing
reachable sets than sampling-based motion planning.

Finally, coarse bisimulations of discrete-time piecewise-
affine systems based on temporal logic specifications are
computed in [20]. This work is also similar to CEGAR,
but directly computes a formula-equivalent bisimulation. Our
approach is different as it is focused on controller synthesis
and does not require the exact computation of reachable sets
for the system.

We first create an existential abstraction, which is a finite
abstraction of the system where transitions between abstract
states are assumed to exist, but have yet not been verified
to exist in the (concrete) system, e.g., through reachability
computations. We then compute an automaton for the LTL
formula and create the product automaton. The product au-
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tomaton guides us in reasoning about complicated temporal
logic properties as a sequence simple temporal properties that
can be analyzed using constrained reachability techniques.
This sequence of constrained reachability problems is called
a discrete plan. However, the system might not be able to
follow a given discrete plan since dynamic constraints were
not considered in the existential abstraction. Thus, we check
the discrete plan with the continuous dynamics by solving a
sequence of constrained reachability problems. If a control
policy is not found, the product automaton is updated and a
new discrete plan is generated.

We take advantage of the significant work in computing
(state) constrained reachability for dynamical systems. This
includes robotic motion planning [21], [22], optimization-
based methods for trajectory generation [23]–[25], and PDE-
based methods [26]. The exact methods for computing con-
strained reachability are not critical; we will only require a
sound technique.

Our main contribution is an approach for computing
control policies for systems subject to LTL specifications
that is independent of the specific methods used to compute
constrained reachability. We use a product automaton to gen-
erate sequences of constrained reachability problems, which
we then check. This is a general approach that can be used
for systems for which one can solve constrained reachability
problems. It is also easy to parallelize. As a novel application
of this framework, we create control policies for Mixed
Logical Dynamical (MLD) systems [27], which model linear
hybrid automata, constrained linear systems, and piecewise
affine systems. Interestingly, coarse abstractions are compu-
tationally beneficial for such systems.

The current version of this paper is rough in places and
intended to be an initial submission for timely dissemination.

II. PRELIMINARIES

In this section we give background on the system model
and specification language. An atomic proposition is a state-
ment that is either True or False . The cardinality of a set
X is denoted by �X �.
A. System model

We begin by defining a dynamical system model M.
The approach in this paper applies to more general hybrid
system models [4], which we do not introduce here to reduce
unnecessary notation. The system M is called the concrete
system to distinguish it from its abstraction, which will be
introduced in Section III-A. We will consider a special case
of these dynamics in Section VI-A.

A discrete-time nonlinear dynamical system M is of the
form

x(t + 1) = f(x(t), u(t), d(t)), t = 0,1,2, . . . , (1)

with state x ∈ X ⊆ Rn, control input u ∈ U ⊆ Rm, disturbance
d ∈ D ⊆ Rd, and initial state x(0) = x0. Let AP be a finite set
of atomic propositions. The labeling function L ∶ X → 2AP

maps each state to the set of atomic propositions that are

Fig. 2. A (simplified) Büchi automaton corresponding to the LTL formula
' = �A ∧ � � B ∧ � � C ∧ �S. Here Q = {q0, q1, q2, q3}, ⌃ ={A,B,C,S}, Q0 = {q0}, F = {q3}, and transitions are represented by
labeled arrows.

True . For atomic proposition p ∈ AP , let [[p]] denote the
set of states where p is True .

Temporal logic specifications typically require using a
control policy with memory. A memoryless control policy
is a map µ ∶ X → U . A finite-memory control policy is a
map µ ∶ X ×M → U ×M where the finite set M is called
the memory.

A run � = x0x1x2 . . . of M under control policy µ is an
infinite sequence of its states, where xt ∈ X is the state of the
system at index t (also denoted �t) and for each t = 0,1, . . .,
there exists u ∈ U such that xt+1 = f(x(t), u(t)). A word is
an infinite sequence of labels L(�) = L(x0)L(x1)L(x2) . . .
where � = x0x1x2 . . . is a run. The set of runs of M with
initial state x ∈ X induced by control policy µ is denoted byMµ(x).
B. Linear temporal logic

We use linear temporal logic (LTL) to concisely and
unambiguously specify desired system behaviors such as
response, liveness, safety, stability, priority, and guarantee
[28]. However, instead of defining the syntax and seman-
tics of LTL, we consider non-deterministic Büchi automata
(hereafter called Büchi automata), which accept !-regular
languages. Thus, our results hold for any property that can
be specified as an !-regular language, which is a regular
language extended by infinite repetition (denoted by !). In
particular, LTL is a subset of !-regular languages, and an
equivalent Büchi automaton can be constructed for any LTL
formula ' [28]. Figure 2 shows an example Büchi automaton.

Definition 1. A Büchi automaton is a tupleA = (Q,⌃, �,Q0, F ) consisting of (i) a finite set of
states Q, (ii) a finite alphabet ⌃, (iii) a transition relation
� ⊆ Q ×⌃ ×Q, (iv) a set of initial states Q0 ⊆ Q, (v) and a
set of accepting states F ⊆ Q.

Let ⌃! be the set of infinite words over ⌃. A run for
� = ⌃0⌃1⌃2 . . . ∈ ⌃! denotes an infinite sequence q0q1q2 . . .
of states in A such that q0 ∈ Q0 and (qi,⌃i, qi+1) ∈ � for
i ≥ 0. Run q0q1q2 . . . is accepting (accepted) if qi ∈ F for
infinitely many indices i ∈ N appearing in the run.

Intuitively, a run is accepted by a Büchi automaton if a
state in F is visited infinitely often.

We use the definition of an accepting run in a Büchi
automaton and the fact that every LTL formula ' can be



represented by an equivalent Büchi automaton A' to define
satisfaction of an LTL formula '.

Definition 2. Let A' be a Büchi automaton corresponding to
the LTL formula '. A run � = x0x1x2 . . . in M satisfies ',
denoted by � � ', if and only if the word L(�) is accepted
by A'.

We will often consider a Büchi automaton as a graph with
the natural bijection between the states and transitions of the
Büchi automaton and the vertices and edges of the graph. Let
G = (S,R) be a directed graph with vertices S and edges
R. There exists an edge e from vertex s to vertex t if and
only if t ∈ �(s, a) for some a ∈ ⌃. A walk w is a finite edge
sequence w = e0e1 . . . ep. A cycle is a walk where e0 = ep.

C. Set-to-set constrained reachability
We now define the set-to-set constrained reachability

problem, which is a key component of our solution approach.
We consider control policies (which compute inputs based
on the current state and perhaps a finite-memory) as state
feedback is typically needed when exogenous disturbances
are present. However, in our examples in Section VI-B, our
control policies will simply be open-loop trajectories.

Definition 3. Consider a concrete system M of the form
(1) where X0,X1,X2 ⊆ X , a non-negative integer horizon
length N , and a control policy µ are all given. Set X2 is con-
strained reachable (under the control policy µ) from set X0,
denoted by X0 �X1 X2, if x(0) ∈X0, x(1), x(2), . . . , x(N−
1) ∈ X1, x(N) ∈ X2, and x(i + 1) = f(x(i), µ(x(i)), d(i))
for i = 0,1, . . . ,N − 1.

Constrained reachability problem: Given a systemM of the
form (1) and sets X0,X1,X2 ⊆ X , find a control policy
µ and a non-negative integer horizon length N such that
X0 �X1 X2. Return µ if it exists.

Solving a constrained reachability problem is generally
undecidable [4]. However, there exist numerous sound al-
gorithms that compute solutions that under-approximate the
true reachable set. Sampling-based algorithms build an ap-
proximation of the reachable set and are probabilistically or
resolution complete [22]. Optimization-based methods are
used for state constrained trajectory generation for nonlinear
[23], [24] and linear [25], [29] systems. Computationally
expensive PDE-based methods are generally applicable [26].
Finally, for a discrete transition system, computing con-
strained reachability is simply graph search [30].

We make the standing assumption that there exists a
black-box method for computing an under-approximation to
a constrained reachability problem for M. We denote this
method by CSTREACH(X0,X1,X2,N,T ), with initial set
X0, constraint set X1, reach set X2, horizon length N ∈ N,
and computation time (or iteration limit) T ∈ N. For a given
query, CSTREACH returns YES, NO, or TIMEOUT. YES
means that a control policy exists, which is returned. NO
means that a control policy does not exist, and TIMEOUT
indicates that a control policy was not found in the time
limit T .

Algorithm 1 CSTREACH(X0,X1,X2,N,T )
Input: System M, sets X0,X1,X2 ⊆ X , values N,T ∈ N
Output: YES and control policy µ, NO, TIMEOUT

D. Problem statement

We now formally state the main problem of the paper and
give an overview of our solution approach.

Problem 1. Given a dynamical system M of the from (1)
with initial state x0 ∈ X and an LTL formula ', determine
whether there exists a control policy µ such that Mµ(x0) �
'. Return the control policy µ if it exists.

Problem 1 is undecidable in general due to the continuous
dynamics [4]. Thus, we consider sound, but not complete,
solutions. Our approach is to create an existential finite ab-
straction T of the system M, without checking reachability
between states in T . Then, we create a product automaton by
combining T with a Büchi automaton A' representing '. An
accepting run in the product automaton is an abstract plan.
However, an abstract plan may be infeasible due to dynamic
constraints. We check a sequence constrained reachability
problems corresponding to an abstract plan. If a control
policy is not found, we update the product automaton and
search for a new abstract plan. This process is repeated until
a feasible trajectory is found, or no more abstract plans exist.

III. COMBINING THE SYSTEM AND SPECIFICATION

We now describe an existential finite abstraction T . This
abstract model over-approximates reachability of the con-
crete system M. The abstract model is easy to compute,
but might produce behaviors that the concrete system cannot
execute. We then combine this abstract model of the system
with an automaton representation of the system.

A. Existential abstraction

We use a transition system to represent the existential
abstraction of a concrete system M of the form (1).

Definition 4. A deterministic (finite) transition system is a
tuple T = (S,R, s0,AP,L) consisting of a finite set of states
S, a transition relation R ⊆ S × S, an initial state s0 ∈ S,
a set of atomic propositions AP , and a labeling function
L ∶ S → 22

AP

.

We use the transition system model to define an existential
abstraction T for the concrete system M as follows. We
partition the concrete system’s state space into equivalence
classes of states and associate an abstract state s ∈ S with
each equivalence class. The concretization map C ∶ S → X
maps each abstract state to a subset of the concrete system’s
state space. A partition is proposition preserving if for every
abstract state s ∈ S and every atomic proposition p ∈ AP ,
u � p if and only if v � p for all concrete states u, v ∈ C(s)
[4]. We do not require our abstraction T to be proposition
preserving, which necessitates the non-standard definition of
the labeling function.



The abstraction T is existential in the sense that there
is an abstract transition (s, t) ∈ R if there exists a control
policy that takes the system from some concrete state in
C(s) to some concrete state in C(t) in finite time. Thus,
the existential abstraction T is an over-approximation of M
in the sense that it contains more behaviors, i.e., a series of
transitions might exist for the abstraction that does not exist
for the concrete system.

We will consider varying levels of abstraction with: a
single state, a state for each atomic proposition, a state for
each polytope in a polytopic partition of the state space,
and a state for a given set of discrete points. A natural
question is when to use a fine or coarse abstraction. A coarser
abstraction requires solving fewer but potentially challenging
constrained reachability problems, while a fine abstraction
requires solving a large number of relatively simpler con-
strained reachability problems. Additionally, it may be easier
to compose solutions to constrained reachability problems
on a fine abstraction compared to a coarse abstraction, as
the size of initial and final sets are smaller. Selecting the
appropriate level of abstraction is directly related to the
difficulty of solving constrained reachability problems of
different sizes.

B. Product automaton

We use a slight modification of the product automaton
construction, due to Vardi and Wolper [31], to represent runs
that are allowed by the transition system and satisfy the LTL
specification.

Definition 5. Let T = (S,R, s0,AP,L) be a transition
system and A = (Q,2AP , �,Q0, F ) be a Büchi automaton.
The weighted product automaton P = T × A is the tupleP ∶= (SP , �P , FP , sP,0,APP , LP ,wP), consisting of

(i) a finite set of states SP = S ×Q,
(ii) a transition relation �P ⊆ SP × SP , where((s, q), (s′, q′)) ∈ �P if and only if (s, s′) ∈ R and

there exists an L ∈ L(s) such that (q,L, q′) ∈ �,
(iii) a set of accepting states FP = S × F ,
(iv) a set of initial states SP,0, with (s0, q0) ∈ SP,0 if q0 ∈

Q0,
(v) a set of atomic propositions APP = Q,

(vi) a labeling function LP ∶ S ×Q→ 2Q, and
(vii) a non-negative valued weight function wP ∶ �P → R.

A run �P = (s0, q0)(s1, q1) . . . is accepting if (si, qi) ∈ FP
for infinitely many indices i ∈ N. The projection of a run
�P = (s0, q0)(s1, q1) . . . in the product automaton P is the
run � = s0s1 . . . in the transition system. The projection of
a finite-memory run in P is a finite-memory run in T [28].

It is well-known that if there exists an accepting run in P
for an LTL formula ', then there exists an accepting lasso
of the form �P = �pre(�suf)! , where �pre be a finite walk
in P and �suf be a finite cycle in P [28]. For an accepting
run �P , the suffix �suf is a cycle in the product automatonP that satisfies the acceptance condition, i.e., it includes an
accepting state. The prefix �pre is a finite run from an initial

state sP,0 to a state on an accepting cycle. We call this an
abstract lasso (or abstract plan).

The concrete plan is the set of constrained reachability
problems corresponding to the transitions along an abstract
lasso. Each transition ((s, q), (s′, q′)) ∈ �P encodes a con-
strained reachability problem (see Section II-C) for the
concrete system. We enforce that the system remains in (s, q)
until it eventually reaches (s′, q′). Let L1 ∈ L(s) correspond
to the set of atomic propositions so that (q,L1, q) ∈ �, and
L2 ∈ L(s) correspond to the set of atomic propositions so
that (q,L2, q

′) ∈ �. Let X0 = C(s), X1 = [[L1]] if there exists
the transition ((s, q), (s′, q′)) ∈ �P or else X1 = �, and X2 =
C(s′) ∩ [[L2]]. Then, the existence of a concrete transition
corresponding to the abstract transition ((s, q), (s′, q′)) can
be checked by solving CSTREACH(X0,X1,X2,N,T ), for
a given horizon length and time (or iteration) limit. These
CSTREACH problems are concatenated along the abstract
lasso in the obvious manner. Note that an additional loop
closure constraint must be added for the cyclic behavior.

We use a weight wP on all transitions in �P to represent
the likelihood that the corresponding abstract transition inP corresponds to a concrete transition, i.e., that CSTREACH
returns a feasible control policy. For example, this could be
the expected necessary horizon length for the CSTREACH
problem or the size of the corresponding constraint sets. Us-
ing these weights contrasts with most methods (with notable
exceptions [1], [16]), which perform expensive reachability
computations ahead of time to ensure that all transitions
in the product automaton can be executed by the concrete
system.

IV. SOLUTION OVERVIEW

We now overview our solution approach as detailed in
Algorithm 2. First, create an existential abstraction T of
the concrete system M as described in Section III-A. A
Büchi automaton A' representing the LTL formula ' can
be computed using standard software [32]. Then, construct
the product automaton P = T ×A'.

The problem is now to find an abstract lasso in P that is
implementable by the concrete system. Compute a minimal
weight abstract lasso, e.g., using Dijkstra’s algorithm. As
there are an exponential number of paths in P , it is important
to only select the most promising lassos, thus the heuristic
weights on transitions in P . Given an abstract lasso, it
must be checked with respect to the system dynamics. Each
abstract lasso corresponds to a sequence of constrained
reachability problems. If the concrete plan if feasible, then
we have a control policy and are done. If a path is infeasible,
then we mark the path as infeasible and update the weights inP . A simple approach is to increase the weight of each edge
along the infeasible path by a constant. Additionally, one
may compute constrained reachability along a subpath of the
infeasible path in an attempt to determine a specific transition
that is the cause. There might not be a single transition that
invalidates a path, though. Invalidated paths are stored in a
set (checkedPaths) so that they are not repeated. We then



compute another lasso until we find a feasible control policy
or have tried every path in P .

A benefit of this simple approach is that it is easy to
parallelize. A central process can search for abstract lassos in
the product automaton and then worker processes can check
constrained reachability on them. The workers report their
results to the master, which then modifies its search accord-
ingly. There are interesting tradeoffs between searching for
accepting lassos and checking individual transitions in P .
This is the subject of future work.

Algorithm 2 Solution overview
Input: Dynamical systemM, LTL formula ', iterLimit ∈ N
Output: Feasible control policy µ

1: Compute existential abstraction T of system M
2: Compute Büchi automaton A' from LTL formula '
3: Create product automaton P = T ×A'

4: Assign heuristic weights on transitions of P
5: checkedPaths = �; iter = 0
6: while iter < iterLimit do
7: iter + = 1
8: Compute �P = �pre(�suf)! , the current minimum

weight abstract lasso not in checkedPaths
9: Check constrained reachability problem CSTREACH

corresponding to abstract lasso
10: if CSTREACH returns YES then
11: return control policy µ
12: else
13: Add lasso �P to checkedPaths
14: (Optional) Check CSTREACH of sub-paths �P
15: Increase weights on transitions along �P
16: end if
17: end while

We now discuss some tradeoffs between different levels
of abstraction. Contrary to the counterexample-guided ab-
straction refinement framework [10], we assume that the
number of states in the abstraction is fixed. Instead, we use
information from constrained reachability computations to
update a ranking over abstract lassos.

The absolute coarsest abstraction of M contains only a
single state with a self transition. It is labeled with every label
that corresponds to a concrete state. This effectively means
that the product automaton is the Büchi automaton. This is
conceptually appealing as it imposes no discretization of the
system. This results in a minimal number of abstract lassos
that must be checked by constrained reachability. A predicate
abstraction is the next coarsest abstraction. This abstraction
maps every set of atomic propositions to an abstract state [9].
Thus, the abstraction only depends on the system’s labels. A
polytopic abstraction assumes that the state space has been
partitioned into polytopes. The finest level is when a set of
concrete states are abstract states, as in [33] and sampling-
based methods [1], [15], [34].

The above discussion can be viewed as a continuous re-
finement of abstractions that depend on the largest volume of
the state space corresponding to an abstract state. Intuitively,

it should become easier to concatenate solutions of con-
strained reachability problems as the volume of state space
corresponding to each abstract state shrinks. In the limit,
when each abstract state maps to a single concrete state, all
constrained reachability problems can be concatenated.

This continuum of abstractions leads to a novel way
of thinking about abstraction refinement. First consider an
abstraction where each abstract state maps to a single con-
crete state. If a feasible solution cannot be found on this
abstraction, one can iteratively expand the regions around the
concrete states until a feasible control policy is found. This
is in contrast to typical counterexample-guided abstraction
refinement approaches [10] since the abstraction becomes
coarser instead of finer.

V. COMPLEXITY

Let �'� be the length of formula '. A Büchi automaton A'

representing the LTL formula ' has worst-case size O(2�'�)
[28]. Given an existential abstraction T with state set S, the
product automaton P has O(�S�2�'�) states. There may be
an exponential number of accepting lassos in P that must be
checked via constrained reachability computations. Unfortu-
nately as these are existential set-to-set computations (∃∃),
it is not guaranteed that solutions to individual problems can
be patched together. This contrasts with (∀∃) computations
[7]. The complexity of checking a constrained reachability
problem depends on the system under consideration.

Proposition 1. Algorithm 2 is complete in the sense that it
will eventually return every accepting lasso in P .

As there are an exponential number of such lassos, and
completeness is mostly a theoretical curiosity. Our approach
depends on having a good guide to find solution, as evi-
denced by accurate heuristic weights on the product automa-
ton transitions.

VI. AN APPLICATION TO MIXED LOGICAL DYNAMICAL
SYSTEMS

A. Mixed Logical Dynamical systems

As an application, we consider Mixed Logical Dynamical
(MLD) systems, which are formally equivalent to piecewise
affine systems [27]. These discrete-time systems have both
continuous and discrete-valued states and allow one to model
nonlinearities, logic, and constraints. Following [35], an
MLD system is given by

x(t + 1) = Ax(t) +B1u(t) +B2�(t) +B3z(t)
y(t) = Cx(t) +D1u(t) +D2�(t) +D3z(t)

subject to E2�(t) +E3z(t) ≤ E1u(t) +E4x(t) +E5, (2)

where t = 0,1,2, . . ., x ∈ Rnc × {0,1}nl are the continuous
and binary states, u ∈ Rmc × {0,1}ml are the inputs, y ∈
Rpc × {0,1}pl are the outputs, and � ∈ {0,1}rl , z ∈ Rrl

are auxiliary binary and continuous variables, respectively.
The terms A, B1, B2, B3, C, D1, D2, D3, E1, E2, E3,
E4, and E5 are system matrices of appropriate dimension.



For notational convenience, let X = Rnc × {0,1}nl and U =
Rmc × {0,1}ml .

Let [[p]] = {x ∈ X �Hpix ≤ hpi for some i ∈ Ip} denote
the set of states where atomic proposition p ∈ AP is True .
This set is the finite union of polyhedrons (finite conjunctions
of halfspaces), which may be non-convex.

We assume that the MLD system (2) is well-posed (see
[35]). Thus, for an initial condition x0 and a control input se-
quence u = u0u1u2 . . ., there is a unique run � = x0x1x2 . . .
that satisfies the constraints in (2). A control input sequence
takes the place of a control policy here.

There are various techniques for computing approximate
solutions to the constrained reachability problem (see Sec-
tion II-C) for MLD systems [27], [36]. As this problem is
undecidable [4], we impose a finite horizon length N to use
mixed-integer optimization methods. The mixed-integer for-
mulation handles integer variables in the dynamics and also
non-convex state constraints, e.g., unions of polyhedrons.
However, one can still capture infinite behavior by repeating
a cyclic finite trajectory.

One can specify a fixed horizon length between each set of
constrained reachability problems, or can leave the horizon
length as a free variable. Additionally, one can decompose
the problem by first computing an accepting loop and then
computing a prefix that reaches this loop from the initial
state, instead of computing both simultaneously. In both
cases, the former approach is computationally more efficient,
but can miss feasible solutions. One approach is trying a
simpler method first and then switching to more expensive
methods as needed.

B. Examples

The following examples demonstrate our methods for tasks
motivated by robot motion planning in a planar environment
(see Figure 3). All computations were done on a laptop with
a 2.4 GHz dual-core processor and 4 GB of memory using
CPLEX [37] with Yalmip [38].

We consider the discrete-time constrained linear system

x1(t + 1) = x1(t) + x3(t) + 0.5u1(t),
x2(t + 1) = x2(t) + x4(t) + 0.5u2(t),
x3(t + 1) = x3(t) + u1(t),
x4(t + 1) = x4(t) + u2(t),

with �u1� ≤ 1, �u2� ≤ 1, �x3� ≤ 1, and �x4� ≤ 1. This planar
system is a discrete-time double integrator in orthogonal
directions. The variables x1, x2 are position and x3, x4 are
velocity.

The robot described by these dynamics operates in a 5 x
5 grid environment (see Figure 3). The robot must stay in
the safe region S and visit different subsets of the atomic
propositions A,B,C,D. We consider task specifications of
the form specF(1) = �n

i=1�Pi ∧ �S and specGF(n) =�n
i=1 � � Pi ∧ �S, where P1 = A, P2 = B, P3 = C, and

P4 = D. We used a fixed horizon N = 20 and a time limit
T = 90 for each constrained reachability problem.

Fig. 3. Diagram of setup. Non-safe regions are in black. The colored
regions labeled A,B, C, and D are goals. Squares and diamonds represent
the prefix and repeated loop trajectory of the system, respectively.

Fig. 4. Time to compute a control policy (i.e., a trajectory in this case)
for various specifications.

We use the coarsest possible abstraction of the dynamical
system; a single abstract state as described in Section IV.
This abstraction is not proposition-preserving and effectively
means that we use only the Büchi automaton representing the
LTL specification to guide the constrained reachability prob-
lems that we solve. This is different than previous approaches
that build a fine abstraction that is proposition-preserving.
Results are shown in Figure 4, where computation times
are averaged over five arbitrary (feasible) problems. It never
required solving more than two constrained reachability
problems to determine a feasible solution. This is likely
because the ordering between visits to the different atomic
propositions did not affect the feasiblity of the solution. The
intuition here is that the robot can move to any state in the
safe region S.



VII. CONCLUSIONS

We created control policies for discrete-time nonlinear
hybrid systems with temporal logic specifications. Our ap-
proach uses a coarse approximation of the system along with
the logical specification to guide the computation constrained
reachability problems only as needed to create a control
policy. Notably, we do not require any discretization of the
original system and the method lends itself to a parallel
implementation.

There are multiple directions for future work, including
investigating tradeoffs between checking an entire sequence
of constrained reachability problems vs. only a subsequence,
choosing the appropriate abstraction level given a system and
a specification, and applying PDE-based methods [26] for the
computation of the constrained reachability problems.
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(MPT),” 2004. [Online]. Available: http://control.ee.ethz.ch/∼mpt/

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms: 2nd ed. MIT Press, 2001.

[31] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Logic in Computer Science, 1986,
pp. 322–331.

[32] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,”
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