
Efficient reactive controller synthesis for a fragment
of linear temporal logic

Eric M. Wolff, Ufuk Topcu, and Richard M. Murray

Abstract—Motivated by robotic motion planning, we develop a
framework for control policy synthesis for both non-deterministic
transition systems and Markov decision processes that are subject
to temporal logic task specifications. We introduce a fragment
of linear temporal logic that can be used to specify common
motion planning tasks such as safe navigation, response to the
environment, surveillance, and persistent coverage. This fragment
is computationally efficient; the complexity of control policy
synthesis is a doubly-exponential improvement over standard lin-
ear temporal logic for both non-deterministic transition systems
and Markov decision processes. This improvement is possible
since we compute directly on the original system, as opposed
to the automata-based approach commonly used for linear
temporal logic. We give simulation results for representative
motion planning tasks and compare to generalized reactivity(1).

I. INTRODUCTION

As autonomous vehicles and robots are used more widely,
it is important for users to be able to accurately and concisely
specify tasks. Additionally, given a task and a system, one
would like to automatically synthesize a control policy that
guarantees that the system will complete the specified task.
In this context, we consider the problem of control policy
synthesis in the presence of an adversarial environment that
behaves either non-deterministically or probabilistically.

A widely used task specification language is linear temporal
logic (LTL). LTL allows one to reason about how system
properties change over time, and thus specify a wide variety
of tasks, such as safety (always avoid B), guarantee (eventu-
ally visit A), persistence (eventually always stay in A), and
recurrence (infinitely often visit A). While LTL is a powerful
language for specifying system properties, the complexity of
synthesizing a control policy that satisfies an LTL formula
is doubly-exponential in the formula length for both non-
deterministic and probabilistic systems [7], [23].

Temporal logics have been used to specify desired behaviors
for robots and hybrid systems for which controllers can then be
automatically synthesized. A common approach is to abstract
the original continuous system as a finite discrete system, such
as a non-deterministic transition system or Markov decision
process (MDP). Sampling-based motion planning techniques
can be used for nonlinear systems to create an approximate
deterministic transition system, for which a satisfying control

Eric M. Wolff and Richard M. Murray are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA.
Ufuk Topcu is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA. The corresponding author is
ewolff@caltech.edu.

policy can be computed [15], [22]. A framework for abstract-
ing a linear system as a discrete transition system and then
constructing a control policy that guarantees that the original
system satisfies an LTL specification is presented in [17].
Reactive control policies are synthesized for linear systems
in the presence of a non-deterministic environment in [18].
A receding horizon framework is used in [25] to handle the
blow-up in system size of the previous approach. Finally,
control policies are created for a Markov decision process that
represents a robot with noisy actuators in [8].

Motivated by robot motion planning, we introduce a frag-
ment of LTL that can be used to specify tasks such as safe
navigation, immediate response to the environment, surveil-
lance, and persistent coverage. For this fragment, we create
control policies in time polynomial in the size of the system
by computing reachable sets directly on the original system
(as opposed to on the product of the system and a property
automaton). The underlying algorithms are quite simple and
the approach scales well. Preliminary experiments indicate
that it outperforms standard implementations of generalized
reactivity(1) [21] on some motion planning problems.

There has been much interest in determining fragments
of LTL that are computationally efficient to reason about.
Fragments of LTL that have exponential complexity for control
policy synthesis were analyzed in [1]. In the context of
timed automata, certain fragments of LTL have been used
for efficient control policy synthesis [20]. The generalized
reactivity(1) fragment can express many tasks and control
policies can be synthesized in polynomial time in the size of
the system [5], [21]. This fragment is extended to generalized
Rabin(1), which is the largest fragment of specifications for
which control policy synthesis can be done efficiently [9].

The main contribution of this paper is the use of an ex-
pressive fragment of LTL for efficient control policy synthesis
for non-deterministic transition systems and Markov decision
processes. A unified approach for control policy synthesis
is presented that covers representative tasks and modeling
frameworks. The algorithms used are simple and do not require
detailed understanding of automata theory or formal methods.
The fragment that we use is effectively a Rabin acceptance
condition, which allows us to compute directly on the system.

We introduce a system model, a specification language, and
a problem statement in Section II. Background on acceptance
conditions, reachable sets, and graph notation is in Section III.
We create control policies for deterministic transition systems
in Section IV, for non-deterministic transition systems in
Section V, and MDPs in Section VI. Note that we will

Submitted, 2013 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/wtm13-acc.html

delay the introduction of MDPs until Section VI. We compare
the complexity of our models with LTL and generalized
reactivity(1) in Section VII and give examples in Section IX.
We conclude with directions for future work in Section X.

II. PROBLEM FORMULATION

In this section we give background and introduce the main
problem. An atomic proposition is a statement that is either
True or False . The cardinality of a set X is denoted by �X �.
A. System model

We use finite transition systems and MDPs (introduced
in Section VI) to model the system behavior. In robotics,
however, one is usually concerned with continuous systems.
This gap is partially bridged by constructive procedures for
exactly abstracting relevant classes of continuous systems
as finite transition systems [3], [14]. Additionally, sampling-
based methods, such as rapidly-exploring random trees [19]
and probabilistic roadmaps [16], build a finite transition system
that approximates a continuous system [15], [22].

Definition 1. A (finite) non-deterministic transition system
(NTS) is a tuple T = (S,A,R, s0,AP,L) consisting of a finite
set of states S, a finite set of actions A, a transition function
R ∶ S × A → 2

S , an initial state s0 ∈ S, a set of atomic
propositions AP , and a labeling function L ∶ S → 2

AP .
Let A(s) denote the set of available actions at state s.

Denote the parents of the states in the set S′ ⊆ S by
Parents(S′) ∶= {s ∈ S � ∃a ∈ A(s) and R(s, a) ∩ S′ ≠ �}.
The set Parents(S′) includes all states in S that can (possi-
bly) reach S′ in a single transition.

We assume that the transition system is non-blocking, i.e.,�R(s, a)� ≥ 1 for each state s ∈ S and action a ∈ A(s).
A deterministic transition system (DTS) is a non-

deterministic transition system where �R(s, a)� = 1 for each
state s ∈ S and action a ∈ A(s).

A run � = s0s1s2 . . . of the transition system is an infinite
sequence of its states, where si ∈ S is the state of the system at
index i (also denoted �i) and for each i = 0,1, . . ., there exists
a ∈ A(si) such that si+1 ∈ R(si, a). A word is an infinite
sequence of labels L(�) = L(s0)L(s1)L(s2) . . . where � =
s0s1s2 . . . is a run.

A memoryless control policy for a non-deterministic tran-
sition system T is a map µ ∶ S → A, where µ(s) ∈ A(s)
for state s ∈ S. A finite-memory control policy is a map
µ ∶ S ×M → A ×M where the finite set M is called the
memory and µ(s,m) ∈ A(s) ×M for state s ∈ S and mode
m ∈M . A control policy selects an action deterministically.

Given a state s ∈ S and action a ∈ A(s), there may
be multiple possible successor states in the set R(s, a),
i.e., �R(s, a)� > 1. A single successor state t ∈ R(s, a) is
non-deterministically selected. We interpret this selection as
an uncontrolled (adversarial) environment resolving the non-
determinism.

The set of runs of T with initial state s ∈ S induced by a
control policy µ is denoted by T µ(s).

B. Linear temporal logic

We use a fragment of linear temporal logic (LTL) to
concisely and unambiguously specify desired system behavior.
We begin by defining LTL, from which our fragment will
inherit syntax and semantics. A comprehensive treatment of
LTL is given in [2].

Syntax: LTL includes: (a) a set of atomic propositions,
(b) the propositional connectives: ¬ (negation) and ∧ (con-
junction), and (c) the temporal modal operators: # (next) andU (until). Other propositional connectives such as ∨ (dis-
junction) and �⇒ (implication) and other temporal operators
such as � (eventually), � (always), �� (infinitely often), and�� (eventually forever) can be derived.

An LTL formula is defined inductively as follows: (1) any
atomic proposition is an LTL formula, (2) given formulas '1

and '2, ¬'1, '1 ∧ '2, #'1, and '1 U '2 are LTL formulas.
Semantics: An LTL formula is interpreted over an infi-

nite sequence of states. Given an infinite sequence of states
� = s0s1s2 . . . and a formula ', the semantics are defined
inductively as follows: (i) for atomic proposition p, si � p
if and only if (iff) p ∈ L(si); (ii) si � ¬' iff si � ';
(iii) si � ' ∧ iff si � ' and si � ; (iv) si � #' iff si+1 � ';
and (v) si � ' U iff ∃j ≥ i s.t. sj � ∀k ∈ [i, j), sk � '.

A propositional formula is composed of only atomic
propositions and propositional connectives. We denote the set
of states where holds by [].

An infinite sequence of states � = s0s1s2 . . . satisfies the
LTL formula ', denoted by � � ', if s0 � '. The system T
under control policy µ satisfies the LTL formula ' at state s ∈
S, denoted T µ(s) � ' if and only if � � ' for all � ∈ T µ(s).
Given a system T , state s ∈ S is winning for ' if there exists
a control policy µ such that T µ(s) � '. Let W ⊆ S denote
the set of winning states.

C. Problem Statement

We now formally state the main problem of the paper and
give an overview of our solution approach.

Problem 1. Given a non-deterministic transition system T
with initial state s0 and an LTL formula ', determine whether
there exists a control policy µ such that Tµ(s0) � '. Return
the control policy µ if it exists.

Problem 1 is intractable in general. Determining if there
exists such a control policy takes time doubly-exponential
in the length of ' [23]. Thus, we consider a fragment of
LTL for which polynomial time solutions to Problem 1 exist.
We will introduce such a fragment in Section II-D and solve
Problem 1 for formulas of this form. We begin by solving
Problem 1 for the special case of a deterministic transition sys-
tem in Section IV. While this discussion is subsumed by that
for the non-deterministic transition system, the lack of non-
determinism allows for stronger results. We solve Problem 1
for non-deterministic transition systems in Section V. Finally,
we solve an analogous problem for MDPs in Section VI.

D. A fragment of LTL
We now introduce a fragment of LTL that can specify a

wide range motion planning tasks such as safe navigation,
immediate response to the environment, surveillance, and
persistent coverage.

We consider formulas of the form

' = 'safe ∧ 'act ∧ 'per ∧ 'rec, (1)

where

'safe ∶= �p1, 'act ∶= �
j∈I2
�(p2,j �⇒ #q2,j),

'per ∶=�� p3, 'rec ∶= �
j∈I4
�� p4,j

and p1 ∶= �j∈I1 p1,j and p3 ∶= �j∈I3 p3,j with �j∈I1 �p1,j =��j∈I1 p1,j and �j∈I3�� p3,j = ���j∈I3 p3,j , respectively.
In the above definitions, I1, . . . , I4 are finite index sets and
pi,j and qi,j are propositional formulas for any i and j.

Remark 1. Guarantee and obligation, i.e., �p and �(p �⇒�q) respectively (where p and q are propositional formulas),
are not included in (1). We show how to include these
specifications in Section VIII-A. It is also natural to consider
specifications that are disjunctions of formulas of the form (1).
We give conditions for this extension in Section VIII-B.

Remark 2. It is clear that the fragment in formula (1) is a
strict subset of LTL. This fragment is incomparable to other
commonly used temporal logics, such as computational tree
logic (CTL) and generalized reactivity(1) (GR(1)). The frag-
ment that we consider allows persistence (��) properties to be
specified, which cannot be specified in either CTL or GR(1).
However, it cannot express existential path quantification as in
CTL or allow disjunctions of formulas as in GR(1) [2], [5].
The fragment is a subset of the generalized Rabin(1) logic [9]
and the µ-calculus of alternation depth two [11].

III. PRELIMINARIES

A. Acceptance conditions
We now give acceptance conditions from classical automata

theory [13] for the LTL fragment introduced in Section II-D.
These acceptance conditions are critical to the development
in this paper, as much of the later analysis depends on them.
Effectively, we reason about satisfaction of LTL formulas in
terms of set operations between a run � of T and subsets of S.
These sets correspond to states where particular propositional
formulas hold. We first define acceptance conditions for a run
and then extend it to a system T .

Definition 2. Let � be a run of the system T , let Inf(�)
denote the set of states that are visited infinitely often in �,
and let Vis(�) denote the set of states that are visited at least
once in �. Given propositional formulas ' and , we relate
satisfaction of an LTL formula with acceptance conditions as
follows
● � � �' iff Vis(�) ⊆ ['],
● � ���' iff Inf(�) ⊆ ['],

Fig. 1. Example of a non-deterministic transition system

● � � ��' iff Inf(�) ∩ ['] ≠ �,
● � � �(�⇒ #') iff �i ∈ [] or �i+1 ∉ ['] for all i.

A run satisfies a conjunction of LTL formulas if and
only if it satisfies all corresponding acceptance conditions.
Acceptance for a system T is extended over runs in the
obvious manner.

In automata theory, � � ' is called a Büchi acceptance
condition and ��' is called a co-Büchi acceptance condition.
The conjunction of both a Büchi and a co-Büchi acceptance
condition is a Rabin acceptance condition with one pair [13].

An example is given in Figure 1. The non-deterministic tran-
sition system T has states S = {1,2,3,4}; labels L(1) = A,
L(2) = C, L(3) = B, L(4) = B,C; a single action called 0;
and transitions R(1,0) = {2,3}, R(2,0) = {2}, R(3,0) = {4},
R(4,0) = {4}. Using the acceptance conditions, it follows
that states {2,4} are winning for formula �(A ∨ C), states{2,3,4} are winning for formula �(A �⇒ #B), states{1,2,3,4} are winning for formula �� C, and states {3,4}
are winning for formula ��B. State 4 is the only state that
is winning for all of the formulas above.

B. Graph Theory
We will often consider a non-deterministic transition system

as a graph with the natural bijection between the states and
transitions of the transition system and the vertices and edges
of the graph. Let G = (S,R) be a directed graph (digraph) with
vertices S and edges R. Let there be an edge e from vertex
s to vertex t if and only if t ∈ R(s, a) for some a ∈ A(s). A
walk w is a finite edge sequence w = e0e1 . . . ep. Denote the
set of all nodes visited along walk w by Vis(w).

A digraph G = (S,R) is strongly connected if there exists a
path between each pair of vertices s, t ∈ S no matter how the
environment resolves the non-determinism. A digraph G′ =(S′,R′) is a subgraph of G = (S,R) if S′ ⊆ S and R′ ⊆ R.
The subgraph of G restricted to states S′ ⊆ S is denoted by
G�S′ . A digraph G′ ⊆ G is a strongly connected component if
it is a maximal strongly connected subgraph of G.

C. Reachability
We define controlled reachability in a non-deterministic

transition system T with a value function. Let B ⊆ S be a
set of states that the controller wants the system to reach.
Let the controlled value function for system T and target
set B be a map V c

B,T ∶ S → N ∪ ∞, whose value V c
B,T (s)

at state s ∈ S is the minimum (over all possible control
policies) number of transitions needed to reach the set B,
given the worst-case resolution of the non-determinism. If the
value V c

B,T (s) = ∞, then the non-determinism can prevent

the system from reaching set B from state s ∈ S. For
example, consider the system in Figure 1 with B = {4}. Then,
V c
B(1) =∞, V c

B(2) =∞, V c
B(3) = 1, and V c

B(4) = 0.
The value function satisfies the optimality condition

V c
B,T (s) = min

a∈A(s) max

t∈R(s,a)V
c
B,T (t), (2)

for all s ∈ S. Algorithm 1 computes the value function by
backwards iteration from the target set B. At every iteration,
a state is assigned a finite value if it can reach a state with
a finite value in a single transition, no matter how the non-
determinism is resolved. It is easy to see that the recursion
takes O(�S� + �R�) time.

Algorithm 1 Value function (controlled)
Input: NTS T , set B ⊆ S
Output: The (controlled) value function V c

B,T
V c
B,T (s)← 0 for all s ∈ B; V c

B,T (s)←∞ for all s ∈ S −B
while B ≠ � do

C ← �
for {s ∈ Parents(B) � V c

B,T (s) =∞} do
V c
B,T (s)←mina∈A(s)maxt∈R(s,a) V c

B,T (t)
if V c

B,T (s) <∞ then
C ← C ∪ {s}

B ← C
return V c

B,T

An optimal control policy µB for reaching the set B is
implicitly encoded in a value function V c

B,T that satisfies (2).
Optimal control policies are memoryless for reachability [4].
Such a policy can be computed at each state s ∈ S as

µB(s) = argmin

a∈A(s) max

t∈R(s,a)V
c
B,T (t). (3)

We use the value function to define the controllable prede-
cessor set for a given system T with target set B ⊆ S. Let

CPre∞T (B) ∶= {s ∈ S � V c
B,T (s) <∞} (4)

be the set of all states that can reach a state in B for any
resolution of the non-determinism.

We define forced reachability similarly. Let the forced value
function for system T and target set B be a map V f

B,T ∶ S →
N ∪∞, whose value V f

B,T (s) at state s ∈ S is the maximum
(over all possible control policies) number of transitions before
reaching the set B. The forced value function satisfies the
optimality condition

V f
B,T (s) = max

a∈A(s) max

t∈R(s,a)V
f
B,T (t). (5)

For a given system T with target set B ⊆ S, the forced
predecessor set

FPre∞T (B) ∶= {s ∈ S � V f
B,T (s) <∞}, (6)

is the set of all states from which no control policy can avoid
reaching a state in B.

Remark 3. We consider the case where the controller selects
an action, and then the environment selects the next state. Our
results are easily extended to the case where the environment
first selects a state for each possible action, and then the
controller selects an action.

IV. SOLUTION FOR DETERMINISTIC TRANSITION SYSTEMS

We first discuss algorithms for computing control policies
for deterministic transition systems, as these are conceptually
simpler than their non-deterministic generalization. We will
compute the winning set W ⊆ S for each specification
separately and then combine them in Algorithm 2. We remind
the reader that T is originally non-blocking.

We first remove all actions from T that do not satisfy
the next-step response specification 'act = �j∈I2 �(p2,j �⇒
#q2,j). For each j ∈ I2, remove an action a ∈ A(s) from a
state s ∈ S if s ∈ [p2,j] and R(s, a) �⊆ [q2,j]. Let B ⊆ S contain
all states that are blocking (due to the removal of an action).
Create the subgraph Tact ∶= T �S−FPre∞T (B).
Proposition 1. A state is in Tact if and only if it is winning
for 'act.

Proof: An action is removed from T if and only if it
directly violates acceptance condition for 'act. All blocking
states, i.e., those in B ⊆ S, must use an action that was
removed. Thus, the set FPre∞T (B) contains all and only states
that must violate the acceptance condition for 'act. Tact is
non-blocking, so any run of the system satisfies 'act.

We next remove the states that violate the safety spec-
ification 'safe = �p1 by creating the subgraph Tsafe ∶=T �S−FPre∞T (S−[p1]).
Proposition 2. A state is in Tsafe if and only if it is winning
for 'safe.

Proof: The acceptance condition for 'safe is Vis(�) ⊆[p1]. The set FPre∞T (S − [p1])) contains a state if and only
if it either is not in [p1] and or cannot avoid visiting a state
not in [p1]. Tsafe is non-blocking, so any run of the system
satisfies 'safe.

We incorporate the persistence specification 'per = � �
p3 by creating the subgraph Tper ∶= T �S−FPre∞T (S−[p3]). The
winning set is CPre∞T (Sper), where Sper is the set of states
in Tper.

Proposition 3. A state is in Tper if it is winning for 'per.

Proof: As in Proposition 2, but with acceptance condition
Inf(�) ⊆ [p3].

We now compute the winning set for the recurrence speci-
fication 'rec = �j∈I4 �� p4,j by computing the sets of states
that can be visited infinitely often.

Proposition 4. Let � be a run of T . If states s, t ∈ Inf(�),
then they must be in the same strongly connected component.

Proof: By definition of Inf(�), states s and t are visited
infinitely often. Thus, there must exist a walk starting at s

and ending at t and vice versa. Thus, s and t are in the same
strongly connected component.

The strongly connected components of T can be com-
puted in O(�S� + �R�) time using Tarjan’s algorithm [6]. Let
SCC(Tper) be the set of all strongly connected components
of Tper that have at least one transition between states in the
component. A strongly connected component C ∈ SCC(Tper)
is accepting if C ∩ [p4,j] ≠ � for all j ∈ I4. Let A be
the set of all accepting strongly connected components and
SA ∶= {s ∈ S � s ∈ C for some C ∈ A}. Every state in an
accepting strongly connected component is in the winning set
W ∶= CPre∞T (SA).
Proposition 5. A state is in SA if it is winning for 'rec.

Proof: The relevant acceptance condition is Inf(�) ∩[p4,j] ≠ � for all j ∈ I4. By definition, every state in C ∈ A
can be visited infinitely often. Since C ∩ [p4,j] ≠ � for all
j ∈ I4, the result follows.

We now give an overview of our approach for control policy
synthesis for deterministic transition systems in Algorithm 2.
Optionally, remove all states from T that cannot be reached
from the initial state s0 in O(�S� + �R�) time using breadth-
first search from s0 [6]. Compute the set of states W that are
winning for ' (lines 1-4). If the initial state s0 ∉W , then no
control policy exists (lines 5-6). If s0 ∈ W , compute a walk
on Tsafe from s0 to a state t ∈ C for some accepting strongly
connected component C ∈ A and where t ∈ �j∈I4[p4,j] (lines
8-9). Compute a walk �suf starting and ending at state t such
that Vis(�suf) ∩ [p4,j] ≠ � for all j ∈ I4 and Vis(�suf) ⊆ C
(line 10). The control policy is implicit in the (deterministic)
run � = �pre(�suf)! , where ! denotes infinite repetition. The
total complexity of the algorithm is O(�I2�(�S� + �R�)).
Algorithm 2 Overview: Synthesis for DTS
Input: DTS T , s0 ∈ S, formula '
Output: Run �

1: Tsafe ← Tact�S−FPre∞Tact
(S−[p1])

2: Tper ← Tsafe�S−FPre∞Tsafe
(S−[p3])

3: A ∶= {C ∈ SCC (Tper) � C ∩ [p4,j] ≠ � ∀j ∈ I4}
4: SA ∶= {s ∈ S � s ∈ C for some C ∈ A}
5: if s0 ∉W ∶= CPre∞Tsafe

(SA) then
6: return ”no satisfying control policy exists”7:
8: Pick state t ∈ C for some C ∈ A and t ∈ �j∈I4[p4,j]
9: Compute walk �pre from s0 to t s.t. Vis(�pre) ⊆W

10: Compute walk �suf from t to t, s.t. Vis(�suf) ⊆ C ⊆W
and Vis(�suf) ∩ [p4,j] ≠ � ∀j ∈ I4

11: return � = �pre(�suf)!

V. NON-DETERMINISTIC TRANSITION SYSTEM

We now discuss control policy construction for non-
deterministic transition systems, which subsumes the devel-
opment in Section IV. Our approach here differs primarily in
the form of the control policy and how we determine the set
of states that satisfy a recurrence formula.

We address formulas for next-step response 'act, safety
'safe, and persistence 'per in a similar manner as Section IV
because both the set FPre∞ and the subgraph operation are
already defined for non-deterministic transition systems.

Next, we consider the recurrence specification 'rec =�j∈I4 �� p4,j . A similar approach to the strongly connected
component decomposition in Section IV could be used, but it is
less efficient to compute such a decomposition due to the non-
determinism. Büchi (and the more general parity) acceptance
conditions have been extensively studied [5], [13].

Proposition 6. Algorithm 3 computes the winning set for 'rec.

Proof: To satisfy the acceptance condition Inf(�) ∩[p4,j] ≠ � for all j ∈ I4, Fi ⊆ CPre∞T (Fj) must hold for
all i, j ∈ I4 for some Fj ⊆ [p4,j]. Algorithm 3 initializes
Fj ∶= [p4,j] for all j ∈ I4 and iteratively removes states from
Fi that are not in CPre∞T (Fj) for all i, j ∈ I4. It terminates
only when Fi ⊆ CPre∞T (Fj) holds for all i, j ∈ I4 or Fi = �
for some i ∈ I4, i.e., the winning set is empty. If it does not
terminate during an iteration, it must remove at least one state
in F = �j∈I4 Fj .

Algorithm 3 BUCHI (T ,{[p4,1], . . . , [p4,�I4�]})
Input: NTS T , [p4,j] ⊆ S for j ∈ I4
Output: Winning set W ⊆ S

Fj ∶= [p4,j] for all j ∈ I4; update ← True
while update do

update ← False
for i ∈ I4 do

for j ∈ I4 do
if Fj �⊆ CPre∞T (Fi) then

update ← True
Fj ← Fj ∩CPre∞T (Fi)
if Fj = � then

return W ← �, Fj for all j ∈ I4
return W ← CPre∞T (F1), Fj for all j ∈ I4
We now overview our approach for control policy synthesis

for non-deterministic transition systems in Algorithm 4. Com-
pute the set W of states that are winning for ' (lines 1-5).
If the initial state s0 ∉ W , then no control policy exists. If
s0 ∈W , compute the memoryless control policies µj induced
from V c

Fj ,Tsafe
for all j ∈ I4 (line 9, also see Algorithm 3).

The finite-memory control policy µ is defined as follows
by switching between memoryless policies depending on the
current ”target.” Let j ∈ I4 denote the current target set Fj .
The system uses control policy µj until a state in Fj is visited.
Then, the system updates its ”target” to k = (j+1 mod �I4�)+1
and uses control policy µk until a state in Fk is visited, and so
on. The total complexity of the algorithm is O(n�F �(�S�+�R�)),
where n =max{�I2�, �I4�} and F = �j∈I4[p4,j].

VI. MARKOV DECISION PROCESSES

We now consider the Markov decision process (MDP)
model. MDPs provide a general framework for modeling non-
determinism and probabilistic behaviors that are present in

Algorithm 4 Overview: Synthesis for NTS
Input: Non-deterministic TS T and formula '
Output: Control policy µ

1: Tsafe ← Tact�S−FPre∞(S−[p1])
2: Tper ← Tsafe�S−FPre∞(S−[p3])
3: P ∶= {[p4,1], . . . , [p4,�I4�]}
4: SA, F ∶= {F1, . . . , F�I4�}← BUCHI(Tper, P)
5: W ∶= CPre∞Tsafe

(SA)
6: if s0 ∉W then
7: return ”no satisfying control policy exists”8:
9: µj ← control policy induced by V c

Fj ,Tsafe
for all j ∈ I4

10: return {µ1, . . . , µ�I4�} {set of control policies}

many real-world systems. We sketch an approach for control
policy synthesis for formulas of the form ' = 'safe ∧ 'per ∧
'rec using techniques from probabilistic model checking [2].
This terse presentation will be extended in later publications.

Definition 3. A (finite) labeled MDP M is the tupleM = (S,A,P, s0,AP,L), consisting of a finite set of states
S, a finite set of actions A, a transition probability function
P ∶ S ×A × S → [0,1], an initial state s0, a finite set of atomic
propositions AP , and a labeling function L ∶ S → 2

AP .
Let A(s) denote the set of available actions at state s. Let∑s′∈S P (s, a, s′) = 1 if a ∈ A(s) and P (s, a, s′) = 0 otherwise.
We assume, for notational convenience, that the available
actions A(s) are the same for every s ∈ S.

A run of the MDP is an infinite sequence of its states, � =
s0s1s2 . . . where si ∈ S is the state of the system at index i and
P (si, a, si+1) > 0 for some a ∈ A(si). The set of runs of M
with initial state s induced by a control policy µ (as defined
in Section II-A) is denoted by Mµ(s). There is a probability
measure over the runs in Mµ(s) [2].

Given a run of M, the syntax and semantics of LTL is
identical to Section II-B. However, satisfaction for an MDPM under a control policy µ is now defined probabilistically
[2]. Let P(Mµ(s) � ') denote the expected satisfaction
probability of LTL formula ' by Mµ(s).
Problem 2. Given an MDP M with initial state s0 and an
LTL formula ', compute the optimal control policy µ∗ =
argmaxµ P(Mµ(s0) � '), over all possible finite-memory,
deterministic policies.

The value function at a state now has the interpretation
as the maximum probability of the system satisfying the
specification from that state. Let B ⊆ S be a set from which the
system can satisfy the specification almost surely. The value
VB,M(s) of a state s ∈ S is the probability that the MDP M
will reach set B ⊆ S when using an optimal control policy
starting from state s ∈ S.

We first compute the winning set W ⊆ S for the LTL
formula ' = 'safe ∧ 'per ∧ 'rec. The probability of
satisfying ' is equivalent to the probability of reaching an
accepting maximal end component [2]. Informally, accepting

TABLE I
COMPLEXITY OF CONTROL POLICY SYNTHESIS

Language DTS NTS MDP
Fragment in (1) O(n�T �) O(n�F ��T �) O(poly(�T �))
GR(1) O(mn�S��R�) O(mn�S��R�) N/A
LTL O(�T �2(�'�)) O(�T �22(�'�)) O(poly(�T �)22(�'�))

maximal end components are sets of states that the system
can remain in forever and where the acceptance condition of
' is satisfied almost surely. These sets can be computed in
O(�S��R�) time using graph search [2], similar to the approach
used in Section V. The winning set W ⊆ S is the union of all
states that are in some accepting maximal end component.

A. Reachability
Once we have computed the winning set W ⊆ S where the

system can satisfy the specification ' almost surely, we need to
reach W from the initial state s0. LetMsafe be the sub-MDP
(defined similarly to Section III-B, see [2]) where all states
satisfy 'safe. The set S1 = CPre∞(W) contains all states that
can satisfy ' almost surely. Let Sr be the set of states that have
positive probability of reaching W , which can be computed
by graph search [2]. The remaining states S0 = S − (S1 ∪Sr)
cannot reach W and thus have zero probability of satisfying
'. Initialize V c

B(s) = 1 for all s ∈ S1, V c
B(s) = 0 for all

s ∈ S0, and V c
B(s) ∈ (0,1) for all s ∈ Sr. It remains to compute

the value function, i.e. the maximum probability of satisfying
the specification, for each state in Sr. This computation boils
down to a standard reachability problem that can be solved by
linear programming or value iteration. [2], [4].

B. Control policy
The optimal control policy for satisfying the LTL formula

' consists of two parts: a memoryless deterministic policy for
reaching an accepting maximal end component, and a finite-
memory deterministic policy for staying there. The former
policy is computed from V c

B,M and denoted µreach. The latter
policy is a finite-memory policy µB that selects actions to
ensure that the system stays inside the accepting maximal
end component forever and satisfies ' by visiting every
state infinitely often [2]. The optimal control policy µ∗ is
µ∗ = µreach if s ∉ B and µ∗ = µB if s ∈ B.

VII. COMPLEXITY

We summarize our complexity results for control policy syn-
thesis for deterministic transition systems, non-deterministic
transition systems, and MDPs. We also compare our results
with those for LTL and the commonly used GR(1) fragment
of LTL [5]. Let �T � = �S� + �R� denote the size of the system,
n =max{�I2�, �I4�}, and F = �j∈I4[p4,j]. We use poly(�T �) to
denote that the complexity is polynomial in �T �, specifically
that of solving a linear program. Note that for typical motion
planning specifications, F is much smaller than S and n
is small. For a GR(1) formula, m and n are the number
of assumptions (N/A for fragment (1)) and guarantees (�I4�
for fragment (1)) respectively, and we use the non-symbolic
complexity results [5]. Results are summarized in Table I.

VIII. EXTENSIONS

We now discuss two natural extensions to the fragment in
formula (1). The first is specifying guarantee and obligation
properties and the second is including disjunctions of formulas.

A. Guarantee and obligation
While guarantee and obligation, i.e., �p and �(p�⇒�q)

respectively (where p and q are propositional formulas),
specifications are not explicitly included in (1), they can be
incorporated by introducing new system variables. An example
of this approach is given in [25]. The size of the system grows
exponentially in the number of additional variables used. In
fact, control policy synthesis for conjunctions of guarantee
formulas is NP-complete [24].

Another approach is to use the stricter specifications �� p
for guarantee and �¬p ∨ � � q for obligation. The ��
formulas are part of the fragment in (1), and disjunctions
can be included in some cases (see Section VIII-B). If the
transition system is strongly connected, then these stricter
formulas are feasible if and only if the original formulas are
because all states in a strongly connected component can be
visited infinitely often. Strong connectivity is a natural as-
sumption in many motion planning applications. For example,
an autonomous car can typically drive around the block to
revisit a location.

B. Disjunctions of specifications
We now consider an extension to specifications that are

disjunctions of formulas of the form (1).
For a deterministic transition system, a control policy for

a formula given by disjunctions of formulas of the form (1)
can be computed by independently solving each individual
subformula using the algorithms given earlier in this section.

Proposition 7. Let ' = '1 ∨ '2 ∨ . . . ∨ 'n where 'i is a
formula of the form (1) for i = 1, . . . , n. Then, there exits a
control policy µ such that T µ(s) � ' if and only if there exists
a control policy µ such that T µ(s) � 'i for some i = 1, . . . , n.

Proof: Sufficiency is obvious. For necessity, assume that
there exists a control policy µ such that T µ(s) satisfies '. The
set T µ(s) contains a single run � since T is deterministic.
Thus, � satisfies 'i for some i = 1, . . . , n.

For non-deterministic transition systems, necessity in Propo-
sition 7 no longer holds because the non-determinism may be
resolved in multiple ways and thus independently evaluating
each subformula may not work.

Algorithm 5 is a sound, but not complete, procedure for
synthesizing a control policy a non-deterministic transition
with a specification given by disjunctions of formulas of the
form (1). Arbitrary disjunctions of this form cannot be solved
both efficiently and exactly, as this extension subsumes Rabin
games which are NP-complete [10]. Future work will deter-
mine under what conditions disjunctions can be incorporated.

Algorithm 5 independently computes winning sets Wi ⊆ S
for each subformula 'i and checks if the initial state can reach
their union W ∶= �n

i=1Wi. The control policy µreach is then

Fig. 2. Left: A diagram of a 10 x 10 grid. Only white cells are labeled
’stockroom.’ Right: Control policy synthesis times for five random grids.

used until a state s ∈ Wi is reached for some i. Then, µi is
used. We are investigating whether or not this approach can
be done recursively.

Algorithm 5 DISJUNCTION
Input: NTS T , formula 'i, i = 1, . . . , n
Output: Winning set W ⊆ S and control policy µ

Wi ⊆ S and µi ← winning states and control policy for 'iW ← �n
i=1Wi

if s0 ∉ CPre∞T (W) then
return µ = �

µreach ← control policy induced by V cW,T
return µreach and µi for all i

IX. EXAMPLES

The following examples demonstrate the techniques de-
veloped in Sections IV and V for tasks motivated by robot
motion planning in a planar environment. We defer an example
for Section VI due to space limitations. The software was
written in Python and computations were done on a Linux
desktop with a dual-core processor and 2 GB of memory.
All computation times were averaged over five randomly
generated problem instances.

A. Deterministic transition system
Consider a gridworld where a robot occupies a single

cell at a time and can choose to either remain in its cur-
rent cell or move to one of four adjacent cells at each
step. We consider square grids with static obstacle densities
of 15 percent. The set of atomic propositions is AP ={pickup,dropoff, storeroom,obs}. The robot’s task is to even-
tually remain in the stockroom while repeatedly visiting a
pickup and a dropoff location. The robot must never collide
with a static obstacle. This task is formalized by the LTL for-
mula ' =��stockroom ∧ ��pickup ∧ ��dropoff ∧ �¬obs,
which is in fragment (1).

Results are shown in Figure 2. A corresponding non-
deterministic Büchi automaton for ' has four states [12].
Thus, the standard automata-based approach for LTL would
do similar graph search computations on a graph four times
larger than the transition system.

B. Non-deterministic transition system
We now consider a similar setup as in Section IX-A, except

that there is now a dynamically moving obstacle. The state

Fig. 3. Upper left: A diagram of a 10 x 10 grid with a dynamic obstacle that
moves within the shaded region. Lower left: The value function at the current
state. Downward jumps indicate the robot exploits a non-optimal move by the
obstacle. Right: Control policy synthesis times for five random grids.

of the system is the product of the robot’s location and the
obstacle’s location, both of which can move as previously
described for the robot. The robot selects an action and then
the obstacle non-deterministically moves. The robot’s task is
to repeatedly visit a pickup and a dropoff location while never
colliding with an obstacle. This task is formalized by the LTL
formula ' = �� pickup ∧ �� dropoff ∧ �¬obs, which is in
both fragment (1) and generalized reactivity(1) [5].

Results are shown in Figure 3. We compare our algorithm
to two implementations (jtlv and gr1c as used in [26]) of
the generalized reactivity(1) synthesis method from [5]. Our
algorithms scale significantly better; neither the jtlv or gr1c
implementation was able to solve a problem with over 100
thousand states. Finally, to highlight the reactive nature of our
control policy, we show the value function as it varies along
a simulated run where the obstacle moves randomly.

X. CONCLUSIONS

We presented a framework for control policy synthesis for
both non-deterministic transition systems and Markov decision
processes that are subject to temporal logic task specifications.
Our approach for control policy synthesis is straight-forward
and efficient, both theoretically and according to our prelimi-
nary experimental results. It offers a promising alternative to
the commonly used generalized reactivity(1) specifications as
it can express many relevant tasks for multiple system models.

Future work will extend the synthesis algorithms here to
create optimal control policies for systems with appropriately
defined costs. Incremental synthesis methods for computing
the reachable sets also appear promising. Finally, while this
fragment appears promising compared to generalized reactiv-
ity(1) and LTL, detailed experimental analysis is needed.

ACKNOWLEDGEMENTS

The authors would like to thank Scott Livingston for help
with the software implementation. This work was supported
by a NDSEG fellowship, the Boeing Corporation, and AFOSR
award FA9550-12-1-0302.

REFERENCES

[1] R. Alur and S. La Torre. Deterministic generators and games for LTL
fragments. ACM Trans. Comput. Logic, 5(1):1–25, 2004.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[3] C. Belta and L. Habets. Control of a class of non-linear systems on
rectangles. IEEE Transactions on Automatic Control, 51:1749–1759,
2006.

[4] D. P. Bertsekas. Dynamic Programming and Optimal Control (Vol. I
and II). Athena Scientific, 2001.

[5] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of Reactive(1) designs. Journal of computer and system sciences,
78:911–938, 2012.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms: 2nd edition. MIT Press, 2001.

[7] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the Association for Computing Machinery,
42:857–907, 1995.

[8] X. C. Ding, S. L. Smith, C. Belta, and D. Rus. LTL control in uncertain
environments with probabilistic satisfaction guarantees. In Proceedings
of 18th IFAC World Congress, 2011.

[9] R. Ehlers. Generalized Rabin(1) synthesis with applications to robust
system synthesis. In NASA Formal Methods. Springer, 2011.

[10] E. Emerson and C. Jutla. The complexity of tree automata and logic of
programs. In In 29th FOCS, 1988.

[11] E. A. Emerson. Handbook of theoretical computer science (vol. B). In
J. van Leeuwen, editor, Temporal and modal logic, chapter Temporal
and modal logic, pages 995–1072. MIT Press, 1990.

[12] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification, 2001.

[13] E. Gradel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research. Springer-Verlag New
York, Inc., 2002.

[14] L. Habets, P. Collins, and J. van Schuppen. Reachability and control
synthesis for piecewise-affine hybrid systems on simplices. IEEE
Transaction on Automatic Control, 51:938–948, 2006.

[15] S. Karaman and E. Frazzoli. Sampling-based motion planning with
deterministic µ-calculus specifications. In Proc. of IEEE Conference on
Decision and Control, 2009.

[16] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[17] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transaction on
Automatic Control, 53(1):287–297, 2008.

[18] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25:1370–1381, 2009.

[19] S. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20:378–400, 2001.

[20] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete
controllers for timed systems. In STACS 95, volume 900, pages 229–242.
Springer, 1995.

[21] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs.
In Proc. International Conference on Verification, Model Checking and
Abstract Interpretation, pages 364 – 380, 2006. Software available at
http://jtlv.sourceforge.net/.

[22] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with
dynamics by a synergistic combination of layers of planning. IEEE
Transactions on Robotics, 26:469–482, 2010.

[23] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
Symposium on Principles of Programming Languages, pages 179–190,
1989.

[24] A. Sistla and E. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32:733–749, 1985.

[25] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning. IEEE Transactions on Automatic Control, 2012.
(to appear).

[26] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray. TuLiP:
A software toolbox for receding horizon temporal logic planning. In
International Conference on Hybrid Systems: Computation and Control,
2011. http://tulip-control.sf.net.

