
Optimal Control of Non-deterministic Systems for a Computationally
Efficient Fragment of Temporal Logic

Eric M. Wolff, Ufuk Topcu, and Richard M. Murray

Abstract— We develop a framework for optimal control
policy synthesis for non-deterministic transition systems subject
to temporal logic specifications. We use a fragment of temporal
logic to specify tasks such as safe navigation, response to
the environment, persistence, and surveillance. By restricting
specifications to this fragment, we avoid a potentially doubly-
exponential automaton construction. We compute feasible con-
trol policies for non-deterministic transition systems in time
polynomial in the size of the system and specification. We
also compute optimal control policies for average, minimax
(bottleneck), and average cost-per-task-cycle cost functions. We
highlight several interesting cases when optimal policies can be
computed in time polynomial in the size of the system and spec-
ification. Additionally, we make connections between computing
optimal control policies for an average cost-per-task-cycle cost
function and the generalized traveling salesman problem. We
give simulation results for motion planning problems.

I. INTRODUCTION

The responsibilities given to robots, autonomous vehicles,
and other cyberphysical systems continue to increase faster
than our ability to reason about the correctness of their be-
havior. In safety-critical applications like autonomous driving
and air traffic management, it is desirable to unambiguously
specify the desired system behavior and automatically syn-
thesize a controller that provably implements this behavior.
Additionally, many applications involve non-determinism (in
the system and environment) and demand efficient (not just
feasible) controllers.

Linear temporal logic (LTL) is an expressive task-
specification language for specifying a variety of tasks,
such as safety (always avoid B), response (if A, then B),
persistence (eventually always stay in A), and recurrence
(infinitely often visit A). Given a finite abstraction of a
dynamical system (see [1]–[7]) and an LTL specification,
feasible control policies can be automatically created for
non-deterministic systems [8]. Unfortunately, the complexity
of synthesizing a control policy that ensures that a non-
deterministic system satisfies an LTL formula is doubly-
exponential in the formula length [9].

The poor worst-case complexity of controller synthesis
for LTL has led to the development of fragments of LTL
that are both useful and computationally efficient to reason
about [10]–[15]. Notably, generalized reactivity(1) (GR(1))
[11] is an efficient fragment for synthesizing feasible control
policies for non-deterministic systems. A GR(1) formula is

Eric M. Wolff and Richard M. Murray are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA.
Ufuk Topcu is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA. The corresponding author is
ewolff@caltech.edu

of the form: environment safety and liveness assumptions
imply system safety and liveness guarantees. This framework
has been used to create reactive control protocols for robots
and autonomous vehicles [7], [16]. The generalized Rabin(1)
fragment subsumes GR(1) and is the maximal possible
extension of GR(1) that can be solved in time polynomial in
the size of the system and specification [13].

We use the fragment of temporal logic introduced by the
authors in [15]. This fragment includes the same system
guarantees in generalized Rabin(1), i.e., all system guaran-
tees in GR(1) and persistence. However, we limit the envi-
ronmental liveness assumptions. In this paper, we show that
for this temporal logic fragment, one can compute correct
and optimal control policies for non-deterministic transitions
systems subject to a variety of relevant cost functions.

Prior work has focused on finding feasible control policies
for systems subject to LTL specifications, although optimal
policies have been considered in certain cases. For determin-
istic systems, control policies can be computed that optimize
minimax (or bottleneck) [17], weighted average [18], and
cost-per-task-cycle [12] cost functions. Optimal policies are
computed for non-deterministic systems subject to parity
constraints and an average cost function in [19]. A heuristic
method for designing controllers for non-deterministic sys-
tems in the GR(1) framework is given in [20].

Our main contributions are methods for optimal control
policy synthesis for non-deterministic transition systems
subject to constraints from an expressive temporal logic
fragment. We compute control policies that are optimal for
average, minimax (bottleneck), and average cost-per-task-
cycle cost functions. Due to the non-determinism (in the
system and environment), we minimize the worst-case for
each cost function. As our techniques do not require the
so-called property automaton construction, we avoid the
potentially doubly-exponential blow-up in the length of the
specification. Additionally, we make close connections with
control policy synthesis and dynamic programming.

We extend a special case of the minimax (bottleneck) cost
function considered in [17] to non-deterministic systems.
We get an exponential time improvement for deterministic
systems, as we do not require a Büchi automaton construc-
tion for the LTL formula. For an average cost-per-task-cycle
cost function (see [12]), we show that finding an optimal
control policy is at least as hard as solving a generalized
traveling salesman problem, which is NP-hard, but for which
many efficient heuristic algorithms exist. Finally, we improve
on our previous results [15] for computing feasible control
policies.

To appear, 2013 Conference on Decison and Control (CDC)
http://www.cds.caltech.edu/~murray/papers/wtm13-cdc.html

II. PRELIMINARIES

In this section we give background on the system model
and specification language that we consider. The notation
follows that used in the authors’ previous work [15].

An atomic proposition is a statement that is either True or
False . A propositional formula is composed of only atomic
propositions and propositional connectives, i.e., ∧ (and), ∨
(or), and ¬ (not). The cardinality of a set X is denoted by�X �.
A. System model

We use non-deterministic finite transition systems to
model the system behavior.

Definition 1. A non-deterministic (finite) transition system
(NTS) is a tuple T = (S,A,R, s0,AP,L, c) consisting of a
finite set of states S, a finite set of actions A, a transition
function R ∶ S × A → 2

S , an initial state s0 ∈ S, a set of
atomic propositions AP , a labeling function L ∶ S → 2

AP ,
and a non-negative cost function c ∶ S ×A × S → R.

Let A(s) denote the set of available actions at state s.
Denote the parents of the states in the set S′ ⊆ S by
Parents(S′) ∶= {s ∈ S � ∃a ∈ A(s) and R(s, a)∩S′ ≠ �}. The
set Parents(S′) includes all states in S that can (possibly)
reach S′ in a single transition. We assume that the transition
system is non-blocking, i.e., �R(s, a)� ≥ 1 for each state s ∈ S
and action a ∈ A(s). A deterministic transition system (DTS)
is a non-deterministic transition system where �R(s, a)� = 1
for each state s ∈ S and action a ∈ A(s).

A memoryless control policy for a non-deterministic tran-
sition system T is a map µ ∶ S → A, where µ(s) ∈ A(s)
for state s ∈ S. A finite-memory control policy is a map
µ ∶ S × M → A × M where the finite set M is called
the memory and µ(s,m) ∈ A(s) ×M for state s ∈ S and
mode m ∈ M . An infinite-memory control policy is a map
µ ∶ S+ → A, where S+ is a finite sequence of states ending
in state s and µ(s) ∈ A(s).

Given a state s ∈ S and action a ∈ A(s), there may
be multiple possible successor states in the set R(s, a),
i.e., �R(s, a)� > 1. A single successor state t ∈ R(s, a) is
non-deterministically selected. We interpret this selection (or
action) as an uncontrolled, adversarial environment resolving
the non-determinism.

A run � = s0s1s2 . . . of T is an infinite sequence of its
states, where si ∈ S is the state of the system at index i (also
denoted �i) and for each i = 0,1, . . ., there exists a ∈ A(si)
such that si+1 ∈ R(si, a). A word is an infinite sequence of
labels L(�) = L(s0)L(s1)L(s2) . . . where � = s0s1s2 . . . is
a run. The set of runs of T with initial state s ∈ S induced
by a control policy µ is denoted by T µ(s).
B. A fragment of temporal logic

We use the fragment of temporal logic introduced in [15]
to specify tasks such as safe navigation, immediate response
to the environment, persistent coverage, and surveillance. For
a propositional formula ', the notation #' means that ' is
true at the next step, �' means that ' is always true, �'

means that ' is eventually true, ��' means that ' is true
infinitely often, and ��' means that ' is eventually always
true [21].

Syntax: We consider formulas of the form

' = 'safe ∧ 'resp ∧ 'ss
resp ∧ 'per ∧ 'task, (1)

where

'safe ∶= � s,

'resp ∶= �
j∈Ir
�(r,j �⇒ #�r,j),

'ss
resp ∶= �

j∈Isr
�� (sr,j �⇒ #�sr,j),

'per ∶=�� p,

'task ∶= �
j∈It
�� t,j .

Note that � s = ��j∈Is s,j = �j∈Is � s,j and � � p =���j∈Ip p,j = �j∈Ip�� p,j . In the above definitions, Is,
Ir, Isr, Ip, and It are finite index sets and i,j and �i,j are
propositional formulas for any i and j.

We refer to each t,j in 'task as a recurrent task.

Remark 1. Guarantee and obligation, i.e., � and�(�⇒ ��) respectively, are not included in (1). Neither
are disjunctions of formulas of the form (1). This fragment
of LTL is incomparable to other commonly used temporal
logics, such as computational tree logic and GR(1). See
Wolff et al. [15] for details.

Remark 2. Our results easily extend to include a fixed order
for some or all of the tasks in 'task, as well as ordered tasks
with different state constraints between the tasks.

Semantics: We use set operations between a run � ofT = (S,A,R, s0,AP,L, c) and subsets of S where particular
propositional formulas hold to define satisfaction of a tem-
poral logic formula [22]. We denote the set of states where
propositional formula holds by [[]]. A run � satisfies the
temporal logic formula ', denoted by � � ', if and only if
certain set operations hold.

Let � be a run of the system T , Inf(�) denote the set
of states visited infinitely often in �, and Vis(�) denote the
set of states visited at least once in �. Given propositional
formulas and �, we relate satisfaction of a temporal logic
formula of the form (1) with set operations as follows:
● � � � iff Vis(�) ⊆ [[]],
● � ��� iff Inf(�) ⊆ [[]],
● � � �� iff Inf(�) ∩ [[]] ≠ �,
● � � �(�⇒ #�) iff �i ∉ [[]] or �i+1 ∈[[�]] for all i,
● � � �� (�⇒ #�) iff there exists an index j such

that �i ∉ [[]] or �i+1 ∈ [[�]] for all i ≥ j.
A run � satisfies a conjunction of temporal logic formulas
' = �m

i=1 'i if and only if the set operations for each temporal
logic formula 'i holds.

The set T µ(s) might include many possible runs because
of the non-determinism. A system T under control policy µ
satisfies the formula ' at state s ∈ S, denoted T µ(s) � ',

Fig. 1. Example of a non-deterministic transition system

if and only if � � ' for all � ∈ T µ(s). Given a system T ,
state s ∈ S is winning (for the system over the environment)
for ' if there exists a control policy µ such that T µ(s) � '.
Let W ⊆ S denote the set of winning states.

An example illustrating the acceptance conditions is given
in Figure 1. The non-deterministic transition system T has
states S = {s1, s2, s3, s4}; labels L(s1) = {a}, L(s2) = {c},
L(s3) = {b}, L(s4) = {b, c}; a single action a0; and transi-
tions R(s1, a0) = {s2, s3}, R(s2, a0) = {s2}, R(s3, a0) ={s4}, R(s4, a0) = {s4}. From the acceptance conditions,
it follows that W = {s2, s4} for formula �(a ∨ c), W ={s2, s3, s4} for formula �(a �⇒ #b), W = {s1, s2, s3, s4}
for formula � � (a �⇒ #b), W = {s1, s2, s3, s4} for
formula �� c, and W = {s3, s4} for formula �� b. State s4
is winning for all of the above formulas.

III. PROBLEM STATEMENT

We now formally state the two main problems of the paper
and give an overview of our solution approach.

Problem 1. Given a non-deterministic transition system T
and a temporal logic formula ' of the form (1), determine
whether there exists a control policy µ such that T µ(s0) � '.
Return the control policy µ if it exists.

We introduce a generic cost function J to distinguish
among solutions to Problem 1. Let J map a set of runsT µ(s0) and the corresponding control policy µ to R ∪∞.

Problem 2. Given a non-deterministic transition system T
and a temporal logic formula ' of the form (1), determine
whether there exists an optimal control policy µ∗ such thatT µ∗(s0) � ' and J(T µ∗(s0)) ≤ J(T µ(s0)) for all feasible
µ. Return the control policy µ∗ if it exists.

We begin by defining the value function in Section IV,
which is a key component of all later algorithms. Then,
we create feasible control policies (i.e., solve Problem 1) in
Section V. Although feasible control policies were created
in [15], we present a significantly improved algorithm.
Then, we introduce average cost-per-task-cycle, minimax
(bottleneck), and average cost functions in Sections VI-B,
VI-C, and VI-D, respectively. We discuss procedures for
computing optimal control policies for these cost functions
in Section VI.

Remark 3. The restriction to the fragment in (1) is critical
for tractability. Problem 1 is intractable in for the full LTL,
as determining if there exists a control policy takes time
doubly-exponential in the length of ' [9].

IV. THE VALUE FUNCTION AND REACHABILITY

We introduce standard dynamic programming no-
tions [23], as applied to non-deterministic systems. We
consider the case where the controller selects an action,
and then the environment selects the next state. Our results
easily extend to the case, used in GR(1) [11], where the
environment first resolves the non-determinism (selects an
action) and then the controller selects its action.

We define controlled reachability in a non-deterministic
transition system T with a value function. Let B ⊆ S be a
set of states that the controller wants the system to reach. Let
the controlled value function for system T and target set B
be a map V c

B,T ∶ S → R ∪∞, whose value V c
B,T (s) at state

s ∈ S is the minimum (over all possible control policies) cost
needed to reach the set B, under the worst-case resolution
of the non-determinism. If the value V c

B,T (s) = ∞, then
the non-determinism can prevent the system from reaching
set B from state s ∈ S. For example, consider the system
in Figure 1 with unit cost on edges and B = {s4}. Then,
V c
B(s1) = ∞, V c

B(s2) = ∞, V c
B(s3) = 1, and V c

B(s4) = 0.
The system cannot guarantee reaching set B from states s1
or s2.

The value function satisfies the optimality condition

V c
B,T (s) = min

a∈A(s) max

t∈R(s,a)V
c
B,T (t) + c(s, a, t),

for all s ∈ S.
An optimal control policy µB for reaching the set B is

memoryless [23] and can be computed at each state s ∈ S as

µB(s) = argmin

a∈A(s) max

t∈R(s,a)V
c
B,T (t) + c(s, a, t).

If multiple actions achieve the minimum, select an action in
this set with a minimal number of transitions to reach B.

We use the value function to define the controllable
predecessor set, CPre∞T (B), for a given system T with target
set B ⊆ S. Let CPre∞T (B) ∶= {s ∈ S � V c

B,T (s) <∞} be the
set of all states that can reach a state in B for any resolution
of the non-determinism.

We define forced reachability similarly. Let the forced
value function for system T and target set B be a map
V f
B,T ∶ S → R ∪ ∞, whose value V f

B,T (s) at state s ∈ S
is the maximum (over all possible control policies) cost of
reaching the set B. The forced value function satisfies the
optimality condition

V f
B,T (s) = max

a∈A(s) max

t∈R(s,a)V
f
B,T (t) + c(s, a, t).

For a given system T with target set B ⊆ S, the forced
predecessor set FPre∞T (B) ∶= {s ∈ S � V f

B,T (s) < ∞}, is
the set of all states from which no control policy can avoid
reaching a state in B.

Remark 4. The value function can be computed for all states
in O(�S�log�S�+�R�) time (see Algorithm 4 in the Appendix).
The predecessor sets can be computed in O(�S� + �R�) time
since unit costs can be assumed [15].

V. FEASIBLE CONTROL POLICY

We now solve Problem 1 by creating feasible control
policies for non-deterministic transition systems that must
satisfy a temporal logic formula of the form (1). Algorithm 2
summarizes the main results from [15]. New results here are
the addition of the steady-state, next-step response formula
'ss

resp and an improved algorithm for computing the winning
set for the recurrent task formula 'task. The 'ss

resp formula is
handled in a similar manner to 'resp and is not detailed here.

Effectively, the formulas besides 'task restrict states that
can be visited or transitions that can be taken. Safety, 'safe,
limits certain states from ever being visited, next-step re-
sponse, 'resp, limits certain transitions from ever being taken,
persistence, 'per, limits certain states from being visited
infinitely often, and steady-state, next-step response, 'ss

resp,
limits certain transitions from being taken infinitely often.
The remaining formula is recurrence, 'task, which constrains
certain states to be visited infinitely often. One creates the
subgraph that enforces all constraints except for 'task and
then computes a finite-memory control policy that repeatedly
visits all 'task constraints. Then, one relaxes the constraints
that only have to be satisfied over infinite time, and computes
all states that can reach the states that are part of this policy.
A feasible control policy exists for all and only the states in
this set. Details are in Algorithm 2.

Connections to graph theory: We will often consider
a non-deterministic transition system as a graph with the
natural bijection between the states and transitions of the
transition system and the vertices and edges of the graph.
Let G = (S,R) be a directed graph (digraph) with vertices
S and edges R. There is an edge e from vertex s to vertex
t if and only if t ∈ R(s, a) for some a ∈ A(s). A digraph
G′ = (S′,R′) is a subgraph of G = (S,R) if S′ ⊆ S and
R′ ⊆ R. The subgraph of G restricted to states S′ ⊆ S is
denoted by G�S′ .

We give an improved algorithm (compared to that in [15])
for the formula 'task in Algorithm 1. The key insight is that
the ordering of tasks does not affect feasibility, which is not
the case for optimality (see Section VI).

Proposition 1. Algorithm 1 computes exactly the winning
set for 'task.

Proof: To satisfy the acceptance condition Inf(�) ∩[[t,j]] ≠ � for all j ∈ It, there must exist non-empty
sets Fj ⊆ [[t,j]] such that Fi ⊆ CPre∞T (Fj) holds for
all i, j ∈ It, i.e., all tasks are completed infinitely often.
Algorithm 1 selects an arbitrary order on the tasks, e.g.,
Fi+1 ⊆ CPre∞T (Fi) for all i = 1,2, . . . , �It� − 1 and F1 ⊆
CPre∞T (F�It�), without loss of generality since tasks are
completed infinitely often and the graph does not change.
Starting with sets Fj ∶= [[t,j]] for all j ∈ It, all and only
the states in each Fj that do not satisfy the constraints are
iteratively removed. At each iteration, at least one state in
F1 is removed or the algorithm terminates. At termination,
each Fj is the largest subset of [[t,j]] from which 'task can
be satisfied. �

The outer while loop runs at most �F1� iterations. During
each iteration, CPre∞T is computed �It� times, which domi-
nates the time required to compute the set intersections (when
using a hash table). Thus, the total complexity of Algorithm 1
is O(�It�Fmin(�S� + �R�)), where Fmin =minj∈It �Fj �.
Algorithm 1 BUCHI (T , {[[t,j]] for j ∈ It})
Input: NTS T , Fj ∶= [[t,j]] ⊆ S for j ∈ It
Output: Winning set W ⊆ S

1: while True do
2: for i = 1,2,3, . . . , �It� − 1 do
3: Fi+1 ← Fi+1 ∩CPre∞T (Fi)
4: if Fi+1 = � then
5: return W ← �, Fj ← � for all j ∈ It
6: end if
7: end for
8: if F1 ⊆ CPre∞T (F�It�) then
9: return W ← CPre∞T (F�It�), Fj for all j ∈ It

10: end if
11: F1 ← F1 ∩CPre∞T (F�It�)
12: end while

Remark 5. Formula 'task can be treated for deterministic
transition systems more efficiently by computing strongly
connected components [24] or performing nested depth-first
search [25]. These O(�S� + �R�) procedures may replace
Algorithm 1.

We now detail feasible control policy synthesis in Algo-
rithm 2. Compute the set W of states that are winning for
' (lines 1-7). If the initial state s0 ∉ W , then no control
policy exists. If s0 ∈ W , compute the memoryless control
policy µSA which reaches the set SA. Use µSA until a state
in SA is reached. Then, compute the memoryless control
policies µj induced from V c

Fj ,Tsafe
for all j ∈ It (line 11,

also see Algorithm 1). The finite-memory control policy
µ is defined as follows by switching between memoryless
policies depending on the current task. Let j ∈ It denote the
current task set Fj . The system uses µj until a state in Fj

is visited. Then, the system updates its task to k = (j + 1,
mod �It�)+1 and uses control policy µk until a state in Fk is
visited, and so on. The total complexity of the algorithm is
O((�Ir � + �Isr � + �It��Fmin�)(�S� + �R�)), which is polynomial
in the size of the system and specification.

VI. OPTIMAL CONTROL POLICY

We now solve Problem 2 by computing control policies for
non-deterministic transitions systems that satisfy a temporal
logic formula of the form (1) and also minimize a cost
function. We consider average cost-per-task-cycle, minimax,
and average cost functions. The last two admit polynomial
time solutions for deterministic and special cases of non-
deterministic transition systems. However, we begin with the
average cost-per-task-cycle cost function as it is quite natural
in applications.

The values these cost functions take are independent of any
finite sequence of states, as they depend only on the long-

Algorithm 2 Overview: Feasible synthesis for NTS
Input: Non-deterministic system T and formula '
Output: Control policy µ

1: Compute Tresp on T
2: Tsafe ← Tresp�S−FPre∞(S−[[s]])
3: Tper ← Tsafe�S−FPre∞(S−[[p]])
4: Compute T ss

resp on Tper
5: ∶= {[[t,j]] for all j ∈ It}
6: SA, F ∶= {F1, . . . , F�It�}← BUCHI(T ss

resp,)
7: W ∶= CPre∞Tsafe

(SA)
8: if s0 ∉W then
9: return “no control policy exists”

10: end if
11: µSA ← control policy induced by V c

SA,Tsafe

12: µj ← control policy induced by V c
Fj ,Tsafe

for all j ∈ It
13: return Control policies µSA and µj for all j ∈ It

Fig. 2. A non-deterministic transition system and its task graph (right).

term behavior of the system. Thus, we optimize the infinite
behavior of the system, which corresponds to completing
tasks specified by 'task on a subgraph of T as constructed
in Section V. We assume that we are given T ss

resp (denoted
hereafter by Tinf) and the task sets Fj ⊆ S returned by
Algorithm 1 (see Algorithm 2). Note that Tinf is the largest
subgraph of T where all constraints from 'safe, 'resp, 'per,
and 'ss

resp hold. Each Fj is the largest set of states for the jth
task that are part of a feasible control policy. The problem
is now to compute a feasible (winning) control policy that
also minimizes the relevant cost function.

A. The task graph

Since only the recurrent tasks in 'task on Tinf will matter
for optimization, we construct a new graph that encodes
the cost of moving between all tasks. We construct a task
graph G′ = (V ′,E′) that encodes the cost of optimal control
policies between all tasks in 'task (see Figure 2). Let V ′
be partitioned as V ′ = �j∈It V ′j , where V ′i ∩ V ′j = � for all
i ≠ j. Let Fj ⊆ S denote the set of states that correspond to
the jth task in 'task, as returned from Algorithm 1. Create a
state v ∈ V ′j for each of the 2

�Fj � − 1 non-empty subsets of
Fj that are reachable from the initial state. Define the map
⌧ ∶ V ′ → 2

S from each state in V ′ to subsets of states in S.
For each state v ∈ V ′, compute the controlled value function
V c
⌧(v),Tinf

on Tinf. For all states u ∈ V ′i and v ∈ V ′j where
i ≠ j, define an edge euv ∈ E′. Assign a cost to edge euv as
cuv ∶=maxs∈⌧(u) V c

⌧(v),Tinf
(s). The cost cuv is the maximum

worst-case cost of reaching a state t ∈ ⌧(v) from a state
s ∈ ⌧(u), when using an optimal control policy.

It is necessary to consider all subsets of states, as the
cost of reaching each subset may differ due to the non-

determinism. For deterministic systems, one can simply
create a state in V ′j for each state in Fj . This is because
the cost of all subsets of Fj can be determined by the costs
to reach the individual states in Fj .

It may be costly to compute the task graph in its en-
tirety. By incrementally constructing the task graph, one can
tradeoff between computation time and conservatism. For
example, one can create a task graph with �It� states where
each state corresponds to the set Fj . This gives a control
policy that leads to an upper bound on the cost of an optimal
policy. Additionally, by defining edges in the task graph as
the minimum worst-case cost mins∈⌧(u) V c

⌧(v),Tinf
(s) between

tasks, one can compute a lower bound on the cost of an
optimal policy. One can use the current control policy and
improve performance in an anytime manner by adding more
states to the subgraph corresponding to subsets of each Fj .
Algorithm 3 Overview: Optimal synthesis for NTS
Input: NTS T , formula ', cost function J
Output: Optimal control policy µ∗

1: Compute T ss
resp, SA, and Fj for all j ∈ It (see Alg. 2)

2: Compute F ∗j ⊆ Fj for all j ∈ It and optimal task order
3: µ∗F ∗ ← control policy from V c

F ∗,Tsafe
where F ∗ = ∪j∈ItF ∗j

4: µ∗j ← control policy from V c
F ∗j ,Tsafe

for all j ∈ It
5: return µ∗F ∗ , µ∗j for all j ∈ It and optimal task order

B. Average cost-per-task-cycle

Recall that for 'task = �j∈It � � t,j , the propositional
formula t,j is the jth task. A run � of system T completes
the jth task at time t if and only if �t ∈ [[t,j]]. A task
cycle is a sequence of states that completes each task at least
once, i.e., it intersects [[t,j]] for each j = 1, . . . ,m at least
once. Similarly to [12], we minimize the average cost-per-
task-cycle, or equivalently the maximum cost of a task cycle
in the limit. For a deterministic system, this corresponds to
finding a cycle of minimal cost that completes every task.

We define the cost function over a run �. Let � be a
run of T under control policy µ, µ(�) be the corresponding
control input sequence, and ITC(t) = 1 indicate that the
system completes a task cycle at time t and ITC(t) = 0

otherwise. The average cost per task cycle of run � is

J ′TC(�, µ(�)) ∶= lim sup

n→∞
∑n

t=0 c(�t, µ(�t),�t+1)∑n
t=0 ITC(t) ,

which maps runs and control inputs of T to R∪∞. This map
is well-defined when (i) c(�t, µ(�t),�t+1) is bounded for all
t ≥ 0, and (ii) there exists a t′ ∈ N such that ITC(t) = 1 for
infinitely many t ≥ t′. We assume that (i) is true in the sequel
and note that (ii) holds for every run that satisfies a formula
' with at least one task.

We define the average per-task-cycle cost function

JTC(T µ(s)) ∶= max

�∈T µ(s)J
′
TC(�, µ(�)) (2)

over the set of runs of system T starting from initial state s
under control policy µ. The cost function (2) does not depend
on any finite behavior of the system, intuitively because any
short-term costs are averaged out in the limit.

We next show that Problem 2 with cost function JTC is at
least as hard as the NP-hard generalized traveling salesman
problem [26].

Generalized traveling salesman problem [26]: Let G =(V,E) be a digraph with vertices V , edges E, and a non-
negative cost cij on each edge (i, j) ∈ E. Set V is the disjoint
union of p vertex sets, i.e., V = V1∪ . . .∪Vp, where Vi∩Vj =� for all i ≠ j. There are no edges between states in the
same vertex set. The generalized traveling salesman problem,
GTSP = �(V,E), c�, is to find a minimum cost cycle that
includes a single state from each Vi for all i = 1, . . . , p.

Theorem 1. Any instance of the generalized traveling sales-
man problem can be reduced (in polynomial time) to an
equivalent instance of Problem 2 with the cost function JTC .

Proof: The proof is by construction. Given an instance
of the GTSP �(V,E), c�, we solve Problem 2 on a deter-
ministic transition system T = (S,A,R, s0,AP,L, c) and
formula '. Let S = V ∪ {s0}. Define the transitions as
R(u, av) = v, with action av ∈ A(u), and costs c(u, av, v) =
cuv for each edge euv ∈ E. Label all states in vertex set
Vi with atomic proposition Li and let ' = �i∈p � � Li.
Finally, add transitions from s0 to every other state s ∈ S.
Although Problem 2 does not require that each task is only
completed once per cycle, an optimal solution always exists
which completes each task once per cycle. �

Recall that It is the index set of all recurrent tasks. We
can fix an arbitrary task ordering, denoted It = 1, . . . , �It�
(with some abuse of notation), without loss of generality for
feasible control policies. However, the order that we visit
tasks matters for optimal control policies. Additionally, we
can select this task order ahead of time or update it during
execution. We now (potentially conservatively) assume that
we will select the task order ahead of time. This assumption
is not necessary in Sections VI-C or VI-D.

We will optimize the task order over all permutations
of fixed task orders. This optimization is a generalized
traveling salesman problem on the task graph. While this is
an NP-hard problem, practical methods exist for computing
exact and approximate solutions [26]. Once the optimal
ordering of tasks is computed, the finite-memory control
policy switches between these tasks in a similar manner
described in Section V.

C. Minimax (bottleneck) costs

We now consider a minimax (bottleneck) cost function,
minimizes the maximum accumulated cost between com-
pletion of tasks. The notation loosely follows [17] which
considers a generalization of this cost function for deter-
ministic transition systems with LTL. Let Ttask(�, i) be the
accumulated cost at the ith completion of a task in 'task
along a run �. The minimax cost of run � is

J ′bot(�, µ(�)) ∶= lim sup

i→∞ (Ttask(i + 1) −Ttask(i)), (3)

which maps runs and control inputs of T to R ∪∞.

Define the worst-case minimax cost function as

Jbot(T µ(s)) ∶= max

�∈T µ(s)J
′
bot(�, µ(�)) (4)

over the set of runs of system T starting from initial state s
under control policy µ.

We now solve Problem 2 for the cost function Jbot. First,
compute the task graph as in Section VI. The edges in the
task graph correspond to the maximum cost accumulated
between completion of tasks, assuming that the system uses
an optimal strategy. Thus, a minimal value of Jbot can
be found by minimizing the maximum edge in the task
graph, subject to the constraint that a vertex corresponding
to each task can be reached. Select an estimate of Jbot and
remove all edges in the task graph that are greater than
this value. If there exists a strongly connected component
of the task graph that contains a state corresponding to each
task and is reachable from the initial state, then we have an
upper bound on Jbot. If not, we have a lower bound. This
observation leads to a simple procedure where one selects
an estimate of Jbot as the median of edge costs that satisfy
the previously computed bounds, removes all edges with
costs greater than this estimate, determines if the subgraph
is strongly connected (with respect to the tasks), and then
updates the bounds. Each iteration requires the computation
of strongly connected components and the median of edge
costs, which can be done in linear time [24]. It is easy to
see that this procedure terminates with the correct value of
Jbot in O(log�E′�) iterations. Thus, the total complexity is
O(log�E′�(�V ′� + �E′�)), giving a polynomial time algorithm
for deterministic transition systems and non-deterministic
transition systems with a single state per task, i.e., �Fj � = 1
for all j ∈ It.
D. Average costs

The average cost of run � is

J ′avg(�, µ(�)) ∶= lim sup

n→∞
∑n

t=0 c(�t, µ(�t),�t+1)
n

,

which maps runs and control inputs of T to R ∪∞.
We now define the worst-case average cost function,

Javg(T µ(s)) ∶= sup

�∈T µ(s0)
J ′avg(�, µ(�)) (5)

over the set of runs of system T starting from initial
state s under control policy µ. Note that this cost function
corresponds to JTC when 'task = � � True , but without
additional tasks.

For non-deterministic transition systems, Problem 2 re-
duces to solving a mean-payoff parity game on Tinf [19].
An optimal control policy will typically require infinite
memory, as opposed to the finite-memory control policies
that we have considered. Such a policy alternates between
a feasible control policy and an unconstrained minimum
cost control policy, spending an increasing amount of time
using the unconstrained minimum cost control policy. Given
the subgraph Tinf and the feasible task sets Fj ⊆ S (see
Algorithm 2), one can compute an optimal control policy

TABLE I
COMPLEXITY OF FEASIBLE POLICY SYNTHESIS

Language DTS NTS
Frag. in (1) O(�'�(�S� + �R�)) O(�'�Fmin(�S� + �R�))
GR(1) O(�'��S��R�) O(�'��S��R�)
LTL O(2(�'�)(�S� + �R�)) O(22(�'�)(�S� + �R�))

using the results of Chatterjee et al. [19]. For deterministic
systems, extensions to a more general weighted average cost
function can be found in [18].

VII. COMPLEXITY

We summarize our complexity results for feasible control
policy synthesis and compare with LTL and GR(1) [11].
We assume that set membership is determined in constant
time with a hash function [24]. We denote the length of a
temporal logic formula by �'�. Let �'� = �Ir � + �Isr � + �It� for
the fragment in (1), �'� = mn for a GR(1) formula with m
assumptions and n guarantees, and �'� be the formula length
for LTL [21]. Recall that Fmin =minj∈It �[[t,j]]�. For typical
motion planning specifications, Fmin � �S� and �'� is small.
We use the non-symbolic complexity results for GR(1) in
[11]. Results are summarized in Table I.

We now summarize the complexity of optimal con-
trol policy synthesis. The task graph G′ = (V ′,E′)
has O(∑i∈It 2�Fi� − 1) states and can be computed in
O((∑i∈It 2�Fi� − 1)(�S�log�S� + �R�)) time. Computing an
optimal control policy for JTC requires solving an NP-hard
generalized traveling salesman problem on G′. Computing an
optimal control policy for Jbot requires O(log�E′�(�V ′�+�E′�)
time. An optimal control policy for Javg can be computed
in pseudo-polynomial time [19]. For deterministic systems,
the task graph has O(∑i∈It �Fi�) states and can be computed
in O((∑i∈It �Fi�)(�S�log�S� + �R�)) time. An optimal control
policy for Javg can be computed in O(�S��R�) time. Thus,
we can compute optimal control policies for deterministic
transition systems with cost functions Jbot and Javg in time
polynomial in the size of the system and specification.
Additionally, for non-deterministic transition systems where�Fj � = 1 for all j ∈ It, we can compute optimal control
policies for Jbot in time polynomial in the size of the system
and specification.

Remark 6. The fragment in (1) is not handled well by
standard approaches. Using ltl2dstar [27], we created Rabin
automaton for formulas of the form 'resp. The computation
time and automaton size both increased exponentially with
the number of conjunctions in 'resp.

VIII. EXAMPLES

The following examples (based on those in [15]) demon-
strate the techniques developed in Sections V and VI for
tasks motivated by robot motion planning in a planar en-
vironment (see Figure 3). All computations were done in
Python on a dual-core Linux desktop with 2 GB of memory.
All computation times were averaged over five arbitrarily
generated problem instances and include construction of the
transition system. Due to lack of space, we only consider the
average cost-per-task-cycle cost function.

Fig. 3. Left: Diagram of deterministic setup (n = 10). Only white cells are
labeled ’stockroom.’ Right: Diagram of non-deterministic setup (n = 10).
A dynamic obstacle (obs) moves within the shaded region.

Fig. 4. Control policy synthesis times for deterministic (left) and non-
deterministic (right) grids.

A. Deterministic transition system

Consider an environment where a robot occupies a single
cell at a time and can choose to either remain in its current
cell or move to one of four adjacent cells at each step.
We consider square grids with static obstacle densities of
20 percent. The robot’s task is to eventually remain in the
stockroom while repeatedly visiting a pickup location P and
multiple dropoff locations D0,D1,D2,D3. The robot must
never collide with a static obstacle. The set of atomic propo-
sitions is {P,D0,D1,D2,D3, stockroom,obs}. This task is
formalized by ' = � � stockroom ∧ � � P ∧ �j∈It � �
Dj ∧ �¬obs. In all following results, Dj holds at a single
state in the transition system. Results for optimal control
policy synthesis are shown in Figure 4 for n×n grids where
n ∈ {200,300,400}.
B. Non-deterministic transition system

We now consider a similar setup with a dynamically
moving obstacle. The state of the system is the product of
the robot’s location and the obstacle’s location, both of which
can move as previously described for the robot. The robot
selects an action and then the obstacle non-deterministically
moves. The robot’s task is similar to before and is formalized
as ' = ��P ∧ �j∈It ��Dj ∧ �¬obs. Results for optimal
control policy synthesis are shown in Figure 4 for n×n grids
where n ∈ {10,14,18}.

IX. CONCLUSIONS

We have presented a framework for optimal control policy
synthesis for non-deterministic transition systems with spec-
ifications from a fragment of temporal logic. Our approach
is simple and makes explicit connections with dynamic
programming through our extensive use of value functions.
Additionally, optimal policies can be computed in polyno-
mial time for certain combinations of cost functions and

system restrictions. Future work will investigate incremental
computation of the value function, extensions to Markov
decision processes, and exploring the underlying automata
structure of this fragment of temporal logic.

APPENDIX

Algorithm 4 computes the controlled value function as
defined in Section IV. This algorithm is a minor extension
of Dijkstra’s algorithm [24] to non-deterministic transition
systems. Similar reasoning applies to the forced value func-
tion. Set Q is a priority queue with standard operations
EXTRACTMIN (extracts an element with minimal value) and
DECREASEKEY (updates an element’s value).

Algorithm 4 Value function (controlled)
Input: NTS T , set B ⊆ S
Output: The controlled value function V c

B,T (herein V)
V (s)←∞ for all s ∈ S −B
V (s)← 0 for all s ∈ B
Q← S
while Q ≠ � do
u← EXTRACTMIN(Q)
if V (u) =∞ then

return V
for s ∈ Parents(u) ∩Q do

tmp←mina∈A(s)maxt∈R(s,a) V (t) + c(s, a, t)
if tmp < V (s) then
V (s)← tmp
DECREASEKEY(Q,s, V (s))

return V

Theorem 2. Algorithm 4 computes the controlled value
function for all states in T in O(�S�log�S� + �R�) time.

Proof: The proof follows that of Dijkstra’s algo-
rithm (see Ch. 24.3 in [24]), modified to account for non-
determinism. Let V ∗(s) denote the optimal cost of reaching
set B from state s ∈ S and V (s) denote the current upper
bound. We show that V (u) = V ∗(u) whenever a state u is
added to S−Q, i.e., u← EXTRACTMIN(Q). This is trivially
true initially. To establish a contradiction, assume state u is
the first state added to S − Q with V (u) > V ∗(u). Thus,
V ∗(u) < ∞ and there exists a policy to reach B from u.
Consider such a policy that reaches a state y ∈ Q that can
reach subset X ⊆ S −Q in a single step, i.e., there exists a ∈
A(y),R(y, a) ⊆X . Such a state y exists since B is reachable
from u. Since all states in X have optimal costs, V (y) =
V ∗(y). The non-negativity of edge weights then implies that
V (y) = V ∗(y) ≤ V ∗(u) ≤ V (u). The contradiction is that
V (u) ≤ V (y). The algorithm runs in O(�S�log�S�+ �R�) time
since EXTRACTMIN and DECREASEKEY are called at most�S� and �R� times, respectively. �

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their
helpful comments. This work was supported by a NDSEG
fellowship, the Boeing Corporation, and AFOSR award
FA9550-12-1-0302.

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 971–
984, 2000.

[2] C. Belta and L. C. G. J. M. Habets, “Controlling of a class of nonlinear
systems on rectangles,” IEEE Trans. on Automatic Control, vol. 51,
pp. 1749–1759, 2006.

[3] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion plan-
ning with complex goals,” IEEE Robotics and Automation Magazine,
vol. 18, pp. 55–64, 2011.

[4] L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and
control synthesis for piecewise-affine hybrid systems on simplices,”
IEEE Trans. on Automatic Control, vol. 51, pp. 938–948, 2006.

[5] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE Conf. on
Decision and Control, 2009.

[6] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[7] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. on Automatic Control, 2012.

[8] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Trans.
on Automatic Control, vol. 57, pp. 1491–1504, 2012.

[9] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. Symp. on Princp. of Prog. Lang., 1989, pp. 179–190.

[10] R. Alur and S. La Torre, “Deterministic generators and games for LTL
fragments,” ACM Trans. Comput. Logic, vol. 5, no. 1, pp. 1–25, 2004.

[11] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Syn-
thesis of Reactive(1) designs,” J. of Computer and System Sciences,
vol. 78, pp. 911–938, 2012.

[12] Y. Chen, J. Tumova, and C. Belta, “LTL robot motion control based on
automata learning of environmental dynamics,” in Proc. of Int. Conf.
on Robotics and Automation, 2012.

[13] R. Ehlers, “Generalized Rabin(1) synthesis with applications to robust
system synthesis,” in NASA Formal Methods. Springer, 2011.

[14] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” in STACS 95. Springer, 1995, vol.
900, pp. 229–242.

[15] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in Proc. of Int. Conf.
on Robotics and Automation, 2013.

[16] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Trans. on Robotics,
vol. 25, pp. 1370–1381, 2009.

[17] S. L. Smith, J. Tumova, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” Int. J. of Robotics
Research, vol. 30, pp. 1695–1708, 2011.

[18] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control with
weighted average costs and temporal logic specifications,” in Proc. of
Robotics: Science and Systems, 2012.

[19] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski, “Mean-payoff
parity games,” in Annual Symposium on Logic in Computer Science
(LICS), 2005.

[20] G. Jing and H. Kress-Gazit, “Improving he continuous execution of
reactive LTL-based controllers,” in Proc. of Int. Conf. on Robotics and
Automation, 2013.

[21] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[22] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics, and
Infinite Games: A Guide to Current Research. Springer-Verlag New
York, Inc., 2002.

[23] D. P. Bertsekas, Dynamic Programming and Optimal Control (Vol. I
and II). Athena Scientific, 2001.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms: 2nd ed. MIT Press, 2001.

[25] G. Holzmann, Spin Model Checker, The Primer and Reference Manual.
Addison-Wesley Professional, 2003.

[26] C. E. Noon and J. C. Bean, “An efficient transformation of the
generalized traveling salesman problem,” INFOR, vol. 31, pp. 39–44,
1993.

[27] J. Klein and C. Baier, “Experiments with deterministic omega-
automata for formulas of linear temporal logic,” Theoretical Computer
Science, vol. 363, pp. 182–195, 2006.

