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Abstract—We present a method for designing a robust control

policy for an uncertain system subject to temporal logic spec-

ifications. The system is modeled as a finite Markov Decision

Process (MDP) whose transition probabilities are not exactly

known but are known to belong to a given uncertainty set. A

robust control policy is generated for the MDP that maximizes

the worst-case probability of satisfying the specification over all

transition probabilities in this uncertainty set. To this end, we use

a procedure from probabilistic model checking to combine the

system model with an automaton representing the specification.

This new MDP is then transformed into an equivalent form

that satisfies assumptions for stochastic shortest path dynamic

programming. A robust version of dynamic programming solves

for a ✏-suboptimal robust control policy with time complexity

O(log1�✏) times that for the non-robust case.

I. INTRODUCTION

As the level of autonomous operation expected of robots,
vehicles, and other cyberphysical systems increases, there is
a growing need for formal methods for precisely specifying
and verifying system properties. As autonomous systems often
operate in uncertain environments, it is also important that
system performance is robust to environmental disturbances.
Furthermore, system models are only approximations of real-
ity, which makes robustness to modeling errors desirable.

A promising approach for specifying and verifying system
properties is the use of temporal logics such as linear temporal
logic (LTL). LTL provides a natural framework to specify
desired properties such as response (if A, then B), liveness
(always eventually A), safety (always not B), stability (even-
tually always A), and priority (first A, then B, then C).

We model the system as a Markov Decision Process
(MDP). MDPs provide a general framework for modeling
non-determinism and probabilistic behaviors that are present
in many real-world systems. MDPs are also amenable to
formal verification techniques for temporal logic properties
[5], that can be alternatively used to create control policies.
These techniques generate a control policy for the MDP
that maximizes the probability of satisfying a given LTL
specification. However, these techniques assume that the state
transition probabilities of the MDP are known exactly, which
is often unrealistic. We relax this assumption by allowing the
transition probabilities of the MDP to lie in uncertainty sets.
We generate a control policy that maximizes the worst-case
probability of a run of the system satisfying a given LTL
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specification over all admissible transition probabilities in the
uncertainty set.

Considering uncertainty in the system model is important
to capture unmodeled dynamics and parametric uncertainty, as
real systems are only approximated by mathematical models.
Additionally, while we consider discrete systems in this paper,
we are motivated by controlling continuous stochastic systems
so that they satisfy temporal logic specifications. Construc-
tive techniques for finite, discrete abstractions of continuous
stochastic systems exist (see [1], [3]), but exact abstraction
is generally difficult. Even if exact finite-state abstraction
techniques are available for a dynamical system model, the
resulting MDP abstraction will only represent the real system
to the extent that the dynamical system model does. Moreover,
if abstraction techniques approximate the dynamical system
model, the MDP abstraction will be a further approximation
of the real system.

Robustness of control policies for MDPs with respect to
uncertain transition probabilities has been studied in the con-
texts of operations research, formal verification, and hybrid
systems. Our approach most closely follows that of Nilim
and El Ghaoui [19], who consider general uncertainty models
and discounted rewards, but not temporal logic specifications.
Related work includes [4], [12], [20]. Formal verification of
temporal logic specifications is well developed for MDPs with
exact transition matrices [5], [10] and standard software tools
exist [14]. Work in verification of uncertain MDPs primarily
considers simple interval uncertainty models for the transition
probabilities [7], [8], [21], which our work includes as a
special case. Recent work in hybrid systems that creates
control policies for stochastic systems [11], [15] does not
consider robustness. Robustness of non-probabilistic discrete
systems to disturbances is explored in [17].

The main contribution of this paper is creating an opti-
mal robust control policy ⇡∗ that maximizes the worst-case
probability of satisfying an LTL specification for a system
represented as a finite labeled MDP with transition matrices
in an uncertainty set P . A control policy ⇡ is a mapping from
each MDP state to an allowable action. The uncertainty set P
can be non-convex and includes interval uncertainty sets as a
special case. This freedom allows more statistically accurate
and less conservative results than interval uncertainty sets.

Preliminary definitions and the formal problem statement
are given in Sections II and III respectively. We combine the
system MDP with an automaton representation of the LTL
specification to form a product MDP that represents system
trajectories that satisfy both the system dynamics and the
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specification in Section IV. We use dynamic programming (see
Section V) to create a robust control policy that maximizes the
worst-case probability of satisfying the specification over all
transition matrices in the uncertainty set. This approach can
be viewed as a game between the system and its environment,
where the controller selects actions to maximize the proba-
bility of satisfying the specification, while the environment
selects transition matrices to minimize the probability of
satisfying the specification. An example of our approach is
presented in Section VII. We conclude with suggestions for
future work in Section VIII.

II. PRELIMINARIES

We now give definitions for both the system modeling
and task specification formalisms, Markov Decision Pro-
cesses (MDPs) and linear temporal logic (LTL), respectively.
Throughout, (in)equality is component-wise for vectors and
matrices. Also, 1 is a vector of ones of appropriate dimension.
An atomic proposition is a statement that is True or False .

A. System Model
Definition 1 (labeled finite MDP). A labeled finite MDPM is
the tuple M = (S,A,P, s

0

,AP,L), where S is a finite set of
states, A is a finite set of actions, P ∶ S ×A × S → [0,1] is the
transition probability function, s

0

is the initial state, AP is a
finite set of atomic propositions, and L ∶ S → 2

AP is a labeling
function. Let A(s) denote the set of available actions at state
s. Let ∑

s

′∈S P (s, a, s′) = 1 if a ∈ A(s) and P (s, a, s′) = 0

otherwise.

We assume, for notational convenience, that the available
actions A(s) are the same for every s ∈ S. We use P a

ij

as
shorthand for the transition probability from state i to state j
when using action a. We call P a ∈ Rn×n a transition matrix,
where the (i, j)-th entry of P a is P a

ij

. Where it is clear from
context, we refer to the row vector P a

i

as p.

Definition 2. A control policy for an MDP M is a sequence
⇡ = {µ

0

, µ
1

, . . .}, where µ
k

∶ S → A such that µ
k

(s) ∈ A(s)
for state s ∈ S and k = 0,1, . . .. A control policy is stationary
if ⇡ = {µ,µ, . . .}. Let ⇧ be the set of all control policies and
⇧

s

be the set of all stationary control policies.

A run of the MDP is an infinite sequence of its states, � =
s
0

s
1

s
2

. . . where s
i

∈ S is the state of the system at index i
and P (s

i

, a, s
i+1) > 0 for some a ∈ A(s

i

). A run is induced
by a control policy.

Uncertainty Model: To model uncertainty in the system
model, we specify uncertainty sets for the transition matrices.

Definition 3 (Uncertain labeled finite MDP). Let the tran-
sition matrix uncertainty set be defined as P where every
P ∈ P is a transition matrix. An uncertain labeled finite MDPM = (S,A,P , s

0

,AP,L) is a family of labeled finite MDPs
such that for every P ∈ P , M′ = (S,A,P, s

0

,AP,L) is a
MDP.

Let Pa

s

be the uncertainty set corresponding to state s ∈ S
and action a ∈ A(s).

Definition 4. An environment policy for an (uncertain) MDPM is a sequence ⌧ = {⌫
0

, ⌫
1

, . . .}, where ⌫
k

∶ S ×A→ P such
that ⌫

k

(s, a) ∈ Pa

s

for state s ∈ S, action a ∈ A(s) and k =
0,1, . . .. An environment policy is stationary if ⌧ = {⌫, ⌫, . . .}.
Let T be the set of all environment policies and T

s

be the set
of all stationary environment policies.

A run of the uncertain MDP is an infinite sequence of its
states, � = s

0

s
1

s
2

. . . where s
i

∈ S is the state of the system
at index i and P (s

i

, a, s
i+1) > 0 for some a ∈ A(s

i

) and
P ∈ Pa

si
. A run is induced by an environment policy and a

control policy.
We associate a reward with each state-action pair in M

through the function r(s, a) ∶ S × A → R. This reward is
incurred at each stage k over the horizon of length N , where
the total expected reward is

V ⇡⌧(s) ∶= lim
N→∞E⇡⌧

�N−1�
k=0

r(s
k

, µ
k

(s
k

)) � s
0

= s� ,
and the expectation E

⇡⌧

depends on both the control and
environment policies.

The optimal worst-case total expected reward starting from
state s ∈ S is

V ∗(s) ∶=max

⇡∈⇧ min

⌧∈T V ⇡⌧(s). (1)

B. Task Specification Language

We use linear temporal logic (LTL) to concisely and unam-
biguously specify the desired system behavior. We only touch
on key aspects of LTL for our problem and defer the reader
to [5] for details.

LTL is built up from (a) a set of atomic propositions, (b) the
logic connectives: negation (¬), disjunction ( ∨ ), conjunction
( ∧ ) and material implication (�⇒), and (c) the temporal
modal operators: next (#), always (�), eventually (�) and
until ( U ). An LTL formula is defined inductively as follows:
(1) any atomic proposition p is an LTL formula; and (2) given
LTL formulas ' and  , ¬', ' ∨  , #' and ' U  are also
LTL formulas.

The semantics of LTL is defined inductively as follows:
(a) For an atomic proposition p, s

i

� p if and only if (iff)
s
i

� p; (b) s
i

� ¬' iff s
i

� '; (c) s
i

� ' ∨  iff s
i

� ' or
s
i

�  ; (d) s
i

� #' iff s
i+1 � '; and (e) s

i

� ' U  iff there
exists j ≥ i such that s

j

�  and ∀k ∈ [i, j), s
k

� '. Based on
this definition, #' holds at position s

i

iff ' holds at the next
state s

i+1, �' holds at position i iff ' holds at every position
in � starting at position i, and �' holds at position i iff '
holds at some position j ≥ i in �.

Definition 5. A run � = s
0

s
1

s
2

. . . satisfies ', denoted by
� � ', if s

0

� '.

Remark 1. LTL allows specification of guarantee, liveness,
and response properties beyond the safety and stability prop-
erties typically used in controls and hybrid systems.

It will be useful to represent an LTL formula as a determin-
istic Rabin automaton, which can always be done [5].



Definition 6. A deterministic Rabin automaton is a tuple A =(Q,⌃, �, q
0

,Acc) where Q is a finite set of states, ⌃ is an
alphabet, � ∶ Q × ⌃ → Q is the transition function, q

0

∈ Q is
the initial state, and accepting state pairs Acc ⊆ 2Q × 2Q.

Let ⌃

! be the set of infinite words over ⌃. A run � =A
0

A
1

A
2

. . . ∈ ⌃! denotes an infinite sequence q
0

q
1

q
2

. . . of
states in A such that q

i+1 ∈ �(qi,Ai

) for i ≥ 0. The run
q
0

q
1

q
2

. . . is accepting if there exists a pair (L,K) ∈ Acc
and an n ≥ 0, such that for all m ≥ n we have q

k

∉ L and
there exist infinitely many k such that q

k

∈K.

Intuitively, a run is accepted by a deterministic Rabin
automaton if the set of states L is visited finitely often and
the set K is visited infinitely often.

III. PROBLEM STATEMENT

We now provide a formal statement of the main problem of
the paper and an overview of our approach.

Definition 7. Let M be an uncertain MDP with initial state
s
0

and atomic propositions AP . Let ' be an LTL formula
over AP . Then, P⇡,⌧(s

0

� ') is the expected satisfaction
probability of ' byM under control policy ⇡ and environment
policy ⌧ .

Definition 8. An optimal robust control policy ⇡∗ for uncer-
tain MDP M is

⇡∗ = argmax

⇡∈⇧ min

⌧∈T P⇡,⌧(s
0

� ').
Problem 1. Given an uncertain labeled finite MDP M and
an LTL formula ' over AP , create an optimal robust control
policy ⇡∗.

We solve Problem 1 by first creating the product MDPM
p

, which contains only valid system trajectories that also
satisfy the LTL specification. We modify M

p

so that all
policies for it are proper, and thus it satisfies stochastic shortest
path assumptions. Maximizing the worst-case probability of
satisfying the specification is equivalent to a creating a control
policy that maximizes the worst-case probability of reaching
a certain set of states in M

p

. We solve for this policy using
robust dynamic programming. Finally, we map the robust
control policy back to M. This procedure is detailed in the
rest of the paper.

IV. THE PRODUCT MDP

In this section, we create a product MDP M
p

which
contains behaviors that satisfy both the system MDP M and
the LTL specification '. We transformM

p

into an equivalent
form M

ssp

where all stationary control policies are proper
in preparation for computing optimal robust control policy in
Section VI.

A. Forming the product MDP

The product MDP M
p

restricts behaviors to those that
satisfy both the system transitions and the determinstic Rabin
automaton A

'

representing the LTL formula '.

Definition 9. For labeled finite MDPM = (S,A,P, s
0

,AP,L) and deterministic Rabin
automaton A

'

= (Q,2AP , �, q
0

,Acc), the product MDPM
p

= (S
p

,A,P
p

, s
0p

,Q,L
p

) with S
p

= S ×Q,

● P
p

((s, q),↵, (s′, q′)) = �������
P (s,↵, s′) if q′ = �(q,L(s′))
0 otherwise,

● s
0p

= (s
0

, q) such that q = �(q
0

, L(s
0

)),
● L

p

((s, q)) = {q}.
The accepting product state pairs Acc

p

={(Lp

1

,Kp

1

), . . . , (Lp

k

,Kp

k

)} are lifted directly from Acc.
Formally, for every (L

i

,K
i

) ∈ Acc, state (s, q) ∈ S
p

is in Lp

i

if q ∈ L
i

, and (s, q) ∈Kp

i

if q ∈K
i

.

There is a one-to-one correspondence between the paths onM
p

and M, which induces a one-to-one correspondence for
policies on M

p

and M. Given a policy ⇡p = {µp

0

, µp

1

, . . .}
on M

p

, one can induce a policy ⇡ = {µ
0

, µ
1

, . . .} on M by
setting µ

i

(s
i

) = µp

i

((s
i

, q
i

)) for every stage i = 0,1, . . .. This
policy always exists since M

p

and M have the same action
set A. If ⇡p is stationary, then ⇡ is finite-memory [5].

B. Reachability in the product MDP

We now show how to use the product MDP M
p

to
determine a robust control policy that maximizes the worst-
case probability that a given LTL specification is satisfied.
Given a control and environment policy, the probability of
satisfying an LTL formula is equivalent to the probability
of reaching an accepting maximal end component [5]. We
call this probability the reachability probability. Informally,
accepting maximal end components are sets of states that
the system can remain in forever and where the acceptance
condition of the deterministic Rabin automaton is satisfied.
The following definitions follow [5].

Definition 10. A sub-MDP of a MDP is a pair of states and
action sets (C,D) where: (1) C ⊆ S is non-empty and the
map D ∶ C → 2

A is a function such that D(s) ⊆ A(s) is non-
empty for all states s ∈ C and (2) s ∈ C and a ∈D(s) implies
Post(s, a) = {t ∈ S�P a

st

> 0} ⊆ C.

Definition 11. An end component is a sub-MDP (C,D)
such that the digraph G(C,D) induced by (C,D) is strongly
connected.

An end component (C,D) is maximal if there is no end
component (C ′,D′) such that (C,D) ≠ (C ′,D′) and C ⊆
C ′ and D(s) ⊆ D′(s) for all s ∈ C. Furthermore, (C,D) is
accepting for the deterministic Rabin automaton A if for some(L,K) ∈ Acc, L ∉ C and K ∈ C.

Given the accepting maximal end components of M
p

, one
can determine a control policy that maximizes the worst-case
probability of reaching an accepting maximal end component
from the initial state. Without considering transition probabil-
ity uncertainty, a non-robust policy can be computed using
either linear or dynamic programming methods [5].

From the preceding discussion, it is clear that the LTL
formula satisfaction probability depends on the connectivity



of the product MDP M
p

. Thus, we will require that the
uncertainty sets for the transition matrices of the system MDPM do not change this connectivity. Let F a denote the nominal
transition matrix for action a.

Assumption 1. F a

ij

= 0 if and only if P a

ij

= 0 for all P a ∈ Pa

and for all i, j ∈ S.

Assumption 1 says that if a nominal transition is zero (non-
zero) if and only if it is zero (non-zero) for all transition
matrices in the uncertainty set.

C. Stochastic shortest path form of product MDP
We now transform the product MDP M

p

into an equiv-
alent form M

ssp

where all stationary control policies µ are
proper. Note that M

p

and M
ssp

are equivalent only in terms
of the probability of reaching an accepting maximal end
component—both the states and the transition probabilities
may change.

Let MDP M have a finite set of states S = {1,2, . . . , n, t}
and actions a ∈ A(s) for all s ∈ S. Let t be a special terminal
state, which is absorbing (P a

tt

= 1) and incurs zero reward
(r(t, a) = 0) for all a ∈ A(t) and all P ∈ Pa

t

[6].

Definition 12. A stationary control policy µ is proper if, under
that policy, there is positive probability that the terminal state
will be reached after at most n transitions, regardless of the
initial state and transition matrices, that is, if

⇢
µ⌧

∶= max

s=1,...,nmax

⌧∈T P
µ⌧

(s
n

≠ t�s
0

= s) < 1. (2)

In the remainder of this section, we use the simplified
notation M

p

= (S,A,P ) to describe the states, actions, and
transition matrices of the product MDP. We refer to a state(s, q) of M

p

as s when clear from context.
Partition the states S of M

p

into three disjoint sets, B,
S
0

, and S
r

. Let set B be the union of all accepting maximal
end components in M

p

. By definition, every state s ∈ B has
reachability probability of 1. Let S

0

be the set of states that
have zero probability of reaching B. Set S

0

can be computed
efficiently by graph algorithms [5]. Finally, let set S

r

= S−(B∪
S
0

) contain states not in an accepting maximal end component
but with non-zero maximum reachability probability. It is easy
to see that B, S

0

, and S
r

form a partition of S.

Algorithm 1 Appending the terminal state
Require: M

p

= (S,A,P ) and S
r

, S
0

,B
S ∶= S ∪ {t} and A(t) ∶= {u} and r(t, u) ∶= 0;
A(s) ∶= A(s) ∪ {u} and Pu

st

∶= 1 for all s ∈ B ∪ S
0

.

In Algorithm 1, we augment S with a terminal state t
which is absorbing and incurs zero reward. Algorithm 1 does
not change the probability of reaching an accepting maximal
end component for any state s ∈ S under any control and
environment policies.

We eliminate the maximal end components in S
r

and
replace them with new states in Algorithm 2. This procedure
is from Section 3.3 of [10], where it is proven (Theorem 3.8
in [10]) that the reachability probability is unchanged by this

Algorithm 2 End component elimination (de Alfaro [10])
Require: MDP M

p

= (S,A,P ) and S
r

, S
0

,B
Ensure: MDP M

ssp

= ( ˆS, ˆA, ˆP ){(C
1

,D
1

), . . . , (C
k

,D
k

)} max end components in S
r

ˆS
0

∶= S
0

and ˆB ∶= B;
ˆS ∶= S ∪ {ŝ

1

, . . . , ŝ
k

} − ∪k
i=1Ci

;
ˆS
r

∶= S
r

∪ {ŝ
1

, . . . , ŝ
k

} − ∪k
i=1Ci

;
ˆA(s) ∶= {(s, a) � a ∈ A(s)} for s ∈ S − ∪k

i=1Ci

;
ˆA(ŝ

i

) ∶= {(s, a) � s ∈ C
i

∧ a ∈ A(s) −D(s)} for 1 ≤ i ≤ k;
For s ∈ ˆS, t ∈ S − ∪k

i=1Ci

and (u, a) ∈ ˆA(s), ˆP
(u,a)
st

∶= P a

ut

and ˆP
(u,a)
sŝi

∶= ∑
t∈Ci

P a

ut

.

procedure. The intuition behind this result is that one can move
between any two states r and s in a maximal end component
in S

r

with probability one.
After applying Algorithms 1 and 2, we call the resulting

MDPM
ssp

. Note that ˆS
r

, ˆB, and ˆS
0

form a disjoint partition
of ˆS. All stationary control policies for M

ssp

are proper, i.e.,
they will almost surely reach the terminal state t.

Theorem 1. All stationary control policies for M
ssp

are
proper.

Proof: Suppose instead that there exists a stationary
control policy µ such that the system starting in state s

0

∈ ˆS
r

has zero probability of having reached the terminal state t after
n stages. This implies that under µ there is zero probability
of reaching any state s ∈ ˆB ∪ ˆS

0

from s
0

∈ ˆS
r

. Then, under
policy µ, there exists a set U ⊆ ˆS

r

such that if state s
k

∈ U
for some finite integer k, then s

k

∈ U for all k. Let U ′ ⊆ U
be the largest set where each state is visited infinitely often.
Set U ′ is an end component in ˆS

r

, which is a contradiction.
Note that one only needs to consider s

0

∈ ˆS
r

, as all s ∈ ˆB∪ ˆS
0

deterministically transition to t.
MDPM

ssp

is equivalent in terms of reachability probabili-
ties to the original product MDPM

p

and all stationary control
policies are proper.

V. ROBUST DYNAMIC PROGRAMMING

We now prove results on robust dynamic programming that
will be used in Section VI to compute the optimal robust
control policy.

A. Dynamic Programming

We require control policies to be proper, i.e. they almost
surely reach the terminal state t for all transition matrices in
the uncertainty set (see Section IV-C).

Assumption 2. All stationary control policies are proper.

Remark 2. This assumption implies that the terminal state
will eventually be reached under any stationary policy. This
assumption allows us to make statements regarding conver-
gence rates. While this assumption is usually a rather strong
condition, it is not restrictive for Problem 1 (see Theorem 1).



In preparation for the main result of this section, we give
the following classical theorem [18].

Theorem 2 (Contraction Mapping Theorem). Let (M,d)
be a complete metric space and let f ∶ M → M be a
contraction, i.e., there is a real number �, 0 ≤ � < 1, such
that d(f(x), f(y)) ≤ �d(x, y) for all x and y in M . Then
there exists a unique point x∗ in M such that f(x∗) = x∗.
Additionally, if x is any point in M , then lim

k→∞ fk(x) = x∗,
where fk is the composition of f with itself k times.

We now define mappings that play an important role in
the rest of this section. The value V (s) is the total expected
reward starting at state s ∈ S. The shorthand V represents the
value function for all s ∈ S�t and can be considered a vector
in RN . Since the reward is zero at the terminal state t, we do
not include it. The T and T

µ⌫

operators are mappings from
Rn to Rn. For each state s ∈ S�t, define the s-th component
of TV and T

µ⌫

V respectively as

(TV )(s) ∶= max

a∈A(s) [r(s, a) + min

p∈Pa
s

pTV ], (3)

(T
µ⌫

V )(s) ∶= r(s, µ(s)) + ⌫(s, µ(s))TV. (4)

In the following two lemmas, we show that these mappings are
monotonic and contractive. We prove these for (3); the proofs
for (4) follow by limiting the actions and transition probabili-
ties at each state s to µ(s) and ⌫(s, µ(s)) respectively. T k is
the composition of T with itself k times.

Lemma 1 (Monotonicity). For any vectors u, v ∈ Rn, such
that u ≤ v, we have that T ku ≤ T kv for k = 1,2, . . ..

Proof: Immediate from (3) since Pa

s

is in the probability
simplex.

Definition 13. The weighted maximum norm ∥ ⋅ ∥
w

of a vector
u ∈ Rn is defined by ∥ u ∥

w

= max

i=1,...,n �u(i)��w(i) where
vector w ∈ Rn and w > 0.

Lemma 2 (Contraction). If all stationary control policies are
proper, then there exists a vector w > 0 and a scalar � ∈ [0,1)
such that ∥ Tu − Tv ∥

w

≤ � ∥ u − v ∥
w

for all u, v ∈ Rn.

Proof: See Appendix.
We now prove the main result of this section. We remind

the reader that the function V ∗ ∶ S → R (equivalently a vector
in Rn), defined in (1), is the optimal worst-case total expected
reward starting from state s ∈ S.

Theorem 3 (Robust Dynamic Programming). Under the as-
sumption that all stationary control policies µ are proper for
a finite MDP M with transition matrices in the uncertainty
set Pa for a ∈ A, the following statements hold.
(a) The optimal worst-case value function V ∗ is the unique

fixed-point of T ,
V ∗ = TV ∗. (5)

(b) The optimal worst-case value function V ∗ is given by,

V ∗ = lim

k→∞T kV, (6)

for all V ∈ Rn. This limit is unique.
(c) A stationary control policy µ and a stationary environ-

ment policy ⌫ are optimal if and only if

T
µ⌫

V ∗ = TV ∗. (7)

Proof: Parts (a) and (b) follow immediately from Theo-
rem 2 and Lemma 2.

Part (c): First assume that T
µ⌫

V ∗ = TV ∗. Then, T
µ⌫

V ∗ =
TV ∗ = V ∗ from (5) and V µ⌫ = V ∗ from the uniqueness of the
fixed-point. Thus, µ and ⌫ are optimal policies. Now assume
that µ and ⌫ are optimal policies so that V µ⌫ = V ∗. Then,
T
µ⌫

V ∗ = T
µ⌫

V µ⌫ = V µ⌫ = V ∗.
Corollary 1. Given the optimal worst-case value function V ∗,
the optimal control actions a∗ satisfy

a∗(s) ∈ arg max

a∈A(s)[r(s, a) + min

p∈Pa
s

pTV ∗], s ∈ S. (8)

and, with some abuse of notation, the optimal transition
vectors (for the environment) are

P ∗a
s

∈ arg min

p∈Pa
s

pTV ∗, s ∈ S, a ∈ A(s). (9)

Proof: Follows from Part (c) in Theorem 3 and (3).
To recap, we showed that T is monotone and a contraction

with respect to a weighted max norm. This let us prove
in Theorem 3 that T has a unique fixed-point that can be
found by an iterative procedure (i.e., value iteration). We
gave conditions on the optimality of stationary policies and
showed how to determine optimal actions for the system and
the environment.

B. Uncertainty Set Representations

Refering back to the operator T defined in (3), we see
that it is composed of two nested optimization problems—
the outer maximization problem for the system and the inner
minimization problem for the environment. To be clear, the
environment optimization problem for a given state s ∈ S and
control action a ∈ A(s) refers to min

p∈Pa
s
pTV .

The tractability of the environment optimization problem
depends on the structure of the uncertainty set Pa

s

. In the
remainder of this section, we investiate interval and likelihood
uncertainty sets, as these are both statistically meaningful and
computationally efficient. Due to lack of space, we do not
discuss maximum a priori, entropy, scenario, or ellipsoidal
uncertainty models, even though these are included in this
framework. The reader should refer to Nilim and El Ghaoui
for details [19].

We assume that the uncertainty sets of the MDP factor by
state and action for the environmental optimization [19].

Assumption 3. Pa can be factored as the Cartesian product
of its rows, so its rows are uncorrelated. Formally, for every
a ∈ A , Pa = Pa

1

× . . . ×Pa

n

where each Pa

i

is a subset of the
probability simplex in Rn.



1) Interval Models: A common description of uncertainty
for transition matrices corresponding to action a ∈ A is by
intervals Pa = {P a � P a ≤ P a ≤ P a

, P a

1 = 1}, where P a and
P

a

are nonnegative matrices P a ≤ P
a

. This representation
is motivated by statistical estimates of confidence intervals
on the individual components of the transition matrix [16].
The environmental optimization problem can be solved in
O(nlog(n)) time using a bisection method [19].

2) Likelihood Models: The likelihood uncertainty model is
motivated by determining the transition probabilities between
states through experiments. We denote the experimentally
measured transition probability matrix corresponding to action
a by F a and the optimal log-likelihood by �

max

.
Uncertainty in the transition matrix for each action a ∈ A is

described by the likelihood region [16]

Pa = {P a ∈ Rn×n�P a ≥ 0, P a1 = 1,�
i,j

F a

ij

logP a

ij

≥ �a}, (10)

where �a < �a

max and can be estimated for a desired confidence
level by using a large sample Gaussian approximation [19]. As
described in Assumption 1, we enforce that F a

ij

= 0 if and only
if P a

ij

= 0 for all i, j ∈ S and all a ∈ A.
Since the likelihood region in (10) does not satisfy Assump-

tion 3, it must be projected onto each row of the transition
matrix. Even with the approximation, likelihood regions are
more accurate representations than intervals, which are further
approximations of the likelihood region. A bisection algorithm
can approximate the environment optimization problem to
within an accuracy � in O(log(V

max

��)) time, where V
max

is the maximum value of the value function [19].

VI. COMPUTING THE OPTIMAL CONTROL POLICY

We now find a robust control policy that maximizes the
probability of satisfying ' over all transitions in an uncertainty
set. We use robust value iteration as described in Section V
on the transformed product MDPM

ssp

created in Section IV.
Finally, we project this control policy to a policy for M.

As we formulated the dynamic programming approach in
terms of total expected reward maximization, we define the
total expected reward as the reachability probability, which is
equivalent to the probability of satisfying the LTL formula.
Thus, for all a ∈ ˆA, the appropriate rewards are r(s, a) = 1

for all s ∈ ˆB and r(s, a) = 0 for all s ∈ ˆS
0

. For the remaining
states, s ∈ ˆS

r

, we initialize the rewards arbitrarily in [0,1]
and compute the optimal worst-case value function using the
iteration presented in Theorem 3. The resulting value function
V ∗
ssp

gives the satisfaction probability for each state in M
ssp

.
The value function V ∗

p

for M
p

is determined from V ∗
ssp

.
For s

p

∈ S
p

, determine the corresponding state s
ssp

∈ ˆS and
let V ∗

p

(s
p

) = V ∗
ssp

(s
ssp

). This mapping is surjective, as there
is at least one s

p

for each s
ssp

.
Given the optimal worst-case value function V ∗

p

for the
original product MDP M

p

, the optimal actions a∗(s) ∈ A(s)
for each s ∈ S

r

can be computed. We do not consider actions
for states in S

0

∪B at this time. However, one cannot simply
use the approach for selecting actions given by (8), because

not all stationary control policies onM
p

are proper. For states
in a maximal end component in S

r

, there may be multiple
actions that satisfy (8). Arbitrarily selecting actions can lead
to situations where the stationary control policy stays in the
maximal end component forever and thus never satisfies the
specification. We avoid this situation by only selecting an
action if it is both optimal (i.e., satisfies (8)) and it has a
non-zero probability of transitioning to a state that is not in a
maximal end component in S

r

. Algorithm 3 selects the action
with the highest probability of transitioning to a state not in a
maximal end component in S

r

.

Algorithm 3 Product MDP Control Policy
Require: V ∗

p

∈ Rn, M
p

= (S,A,P ), S
r

, S
0

, B
Ensure: Robust control policy µ

visited ∶= S
0

∪B;
possAct(s) ∶= {a ∈ A(s)�(T

a

V ∗
p

)(s) = V ∗
p

(s)};
for s ∈ S

r

do

if �possAct(s)� = 1 then

µ(s) ∶= possAct(s) and visited ∶= visited ∪ {s};
end if

end for

while visited ≠ S do

for s ∈ S
r

�visited do

maxLeaveProb ∶= 0;
leaveProb ∶=max

a∈possAct(s)∑
t∈visited P a

st

;
if leaveProb >maxLeaveProb then

optAct ∶= a and optState ∶= s;
end if

end for

µ(s) ∶= optAct and visited ∶= visited ∪ {optState};
end while

Theorem 4. Algorithm 3 returns a robust control policy µ that
satisfies V µ⌫

p

= V ∗
p

for the worst-case environmental policy ⌫.

Proof: For each state s ∈ S
r

, only actions a ∈ A(s)
that satisfy (T

a

V ∗
p

)(s) = V ∗
p

(s) need to be considered as all
other actions cannot be optimal. We call these possible actions.
Every state has at least one possible action by construction.
A state s ∈ visited if a possible action has been selected for
it that also has a positive probability of leaving S

r

. Thus,
states in visited are not in an end component in S

r

. Initialize
visited = S

0

∪B. For every state with only one possible action,
select that action and add the state to visited. For states with
multiple possible actions, only select an action if it has a non-
zero probability of reaching visited, and thus, leaving S

r

. It
is always possible to choose an action in this manner from the
definition of S

r

. Select actions this way until visited = S and
return the corresponding policy µ. By construction, µ satisfies
T
µ⌫

V ∗
p

= V ∗
p

and is proper.
The optimal control policy for satisfying the LTL speci-

fication ' consists of two parts: a stationary deterministic
policy for reaching an accepting maximal end component, and
a finite-memory deterministic policy for staying there. The
former policy is given by Algorithm 3 and denoted µ

reach

. The
latter policy is a finite-memory policy ⇡

B

that selects actions



in a round-robin fashion to ensure that the system stays inside
the accepting maximal end component forever and satisfies '
[5]. The overall optimal policy is ⇡∗

p

= µ
reach

if s ∉ B and
⇡∗
p

= ⇡
B

if s ∈ B. We induce an optimal policy ⇡∗ on M
from ⇡∗

p

as described in Section IV-A.

Complexity
The (worst-case) size of the deterministic Rabin automatonA
'

is doubly-exponential in the length of the LTL formula '
[9]. Experimental work in [13] has shown that deterministic
Rabin automaton sizes are often exponential or lower for many
common types of LTL formulae. Also, there are fragments of
LTL, which include all safety and guarantee properties, that
generate a determinstic Rabin automaton whose size is singly-
exponential in the length of the formula [2].

The size of the product MDP M
p

is equal to the size ofM times the size of A
'

. M
p

has n states and m transitions.
Maximal end components can be found in O(n2) time. Since
T is a contraction, an ✏-suboptimal control policy can be
computed in O(n2mlog(1�✏)) time without uncertainty sets
[6] and O(n2mlog(1�✏)2) when using likelihood transition
uncertainty sets. Thus, the computational cost for incorporat-
ing robustness is O(log(1�✏)) times the non-robust case.

VII. EXAMPLE

We demonstrate our robust control approach on a discrete-
time point-mass robot model. The system model is x

k+1 =
x
k

+ (u
x

+ d
x

)�t, with state x ∈ X ⊂ R2, control u ∈ U ⊂ R2,
disturbance d ∈ D ⊂ R2, and time interval �t = t

k+1 − t
k

for k = 0,1, . . .. The disturbance d ∼ N (0,⌃) where ⌃ =
diag(0.2252,0.2252) and d has support on D. The control setU = [−0.3,0.3]2 and the disturbance set D = [−0.225,0.225]2.

The task for the robot is to sequentially visit three regions of
interest while always remaining safe. Once the robot has vis-
ited the regions, it should return to the start and remain there.
The atomic propositions are {home,unsafe,R1,R2,R3}. The
LTL formula for this task is ' = home ∧ � � home ∧�¬unsafe ∧ �(R1 ∧ �(R2 ∧ �R3)).

We used Monte Carlo simulation (75 samples) to create
a finite MDP abstraction M of our system model, where
each state of M is a square region [0,1]2. The actions
at each state include transitioning to one of four neighbors
(up,left,down,right) or not moving (which guarantees that the
robot remains in its current state). Due to symmetry of the re-
gions and robot, we only calculated transitions for one region.
The transition probabilities corresponding to an action of ’up’
are (up,left,down,right,self,error) = (0.8133, 0.0267, 0.000,
0.0133, 0.120, 0.0267), with other actions defined similarly.
The error state is entered if the robot accidentally transitions
across multiple states. We used large sample approximations
to estimate �a in (10) for each uncertainty level [19].

All computations were run on an 2.4 GHz dual-core desktop
with 2 GB of RAM. The deterministic Rabin automaton
representing ' has 8 states. The product MDP has 437 states
and 8671 transitions. It took 1.8 seconds to compute M

ssp

.
It took on average 5.7, 4.7, and 0.47 seconds to generate an

Fig. 1. Sample trajectories of the robot using the nominal (dotted black) and
robust likelihood (solid blue) control policies. ”unsafe” cells are in black.

Fig. 2. Ratio of worst-case satisfaction probability of ' for nominal and
robust (likelihood and interval) control policies to the nominal control policy
with no uncertainty. Larger ratios are better.

✏-suboptimal control policy with likelihood, interval, and no
(nominal) uncertainty sets. In all cases, ✏ = 10−6.

We calculated the worst-case satisfaction probabilities for
the optimal nominal and robust (likelihood and interval) poli-
cies by letting the environment pick transition matrices given
a fixed control policy. Transitions were assumed to be exact
if they did not lead to an ”unsafe” cell. The robust likelihood
policy outperformed the nominal and interval, as shown in
Figure 2. Figure 1 shows sample trajectories of the robot using
the robust likelihood and nominal control policies.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a method for creating robust control poli-
cies for finite MDPs with temporal logic specifications. This
robustness is useful when the model is not exact or comes from
a finite abstraction of a continuous system. Designing an ✏-
suboptimal robust control policy increases the time complexity
only by a factor of O(log(1�✏)) compared to the non-robust
policy for statistically relevant uncertainty sets.

In the future, we plan to extend these results to other
temporal logics, such as probabilistic computational tree logic
(PCTL). We are also looking into weakening the assumptions
on the transition matrix uncertainty sets to allow for correla-
tion. Finally, further work needs to be done on abstraction of
selected classes of dynamical systems as finite MDPs.
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APPENDIX

Lemma 2: The proof of Lemma 2 closely follows that
in [6] (Vol. II, Section 2.4) where the environment policy is
fixed. More specifically, the proof in [6] is modified to allow
minimization over environment policies. This modification
holds due to Assumptions 1 and 2.

First, partition the state space S = {1,2, . . . , n, t}. Let S
1

={t} and for k = 2,3, . . ., define
S
k

= {i�i ∉ S
1

∪�∪ S
k−1 , min

a∈A(i) max

j∈S1∪�∪Sk−1
min

P ∈Pa
i

P a

ij

> 0}.
Let m be the largest integer such that S

m

is nonempty. By
Assumptions 1 and 2, ∪m

k=1Sk

= S.
Choose a vector w > 0 so that T is a contraction with respect

to ∥ ⋅ ∥
w

. Take the ith component w
i

to be the same for states
i in the same set S

k

. Choose the components w
i

of the vector
w by w

i

= y
k

if i ∈ S
k

, where y
1

, . . . , y
m

are appropriately
chosen scalars satisfying 1 = y

1

< y
2

< � < y
m

.
Let ✏ ∶= min

k=2,...,m min

µ∈⇧s

min

i∈Sk

min

P ∈P �
j∈S1∪�∪Sk−1

P
µ(i)
ij

,

where P is the set of all transition matrices that satisfy
Assumption 1. Note that 0 < ✏ ≤ 1. We will show that one can
choose y

2

, . . . , y
m

so that for some � < 1, ym

yk
(1− ✏)+ yk−1

yk
✏ ≤

� < 1 for k = 2, . . . ,m and then show that such a choice exists.
For all vectors u, v ∈ Rn, select µ such that T

µ

u = Tu.
Then, for all i,(Tv)(i) − (Tu)(i) = (Tv)(i) − (T

µ

u)(i)
≤ (T

µ

v)(i) − (T
µ

u)(i)
= n�

j=1
V

µ(i)
ij

v(j) −Uµ(i)
ij

u(j)
≤ n�

j=1
P

µ(i)
ij

(v(j) − u(j)),
where U

µ(i)
i

= argmin

p∈Pµ(i)
i

pTu, V
µ(i)
i

=
argmin

p∈Pµ(i)
i

pT v, and P
µ(i)
ij

∶= argmax{Uµ(i)
ij

(v(j) −
u(j)), V µ(i)

ij

(v(j) − u(j))} over Uµ(i)
ij

and V
µ(i)
ij

for each j.
Let k(j) be such that state j belongs to the set S

k(j). Then,
for any constant c, ∥ v−u ∥

w

≤ c �⇒ v(j)−u(j) ≤ cy
k(j), j =

1, . . . , n, and thus for all i,
(Tv)(i) − (Tu)(i)

cy
k(i) ≤ 1

y
k(i)

n�
j=1

P
µ(i)
ij

y
k(j)

≤ y
k(i)−1
y
k(i) �

j∈S1∪�∪Sk(i)−1
P

µ(i)
ij

+ y
m

y
k(i) �

j∈Sk(i)∪�∪Sm

P
µ(i)
ij

= �yk(i)−1
y
k(i) −

y
m

y
k(i) � �

j∈S1∪�∪Sk(i)−1
P

µ(i)
ij

+ y
m

y
k(i) ≤ �

y
k(i)−1
y
k(i) −

y
m

y
k(i) � ✏ +

y
m

y
k(i) ≤ �.

Then, (Tv)(i)−(Tu)(i)
wi

≤ c�, i = 1, . . . , n, which taking the
max over i gives ∥ Tv − Tu ∥

w

≤ c� for all u, v ∈ Rn with∥ u−v ∥
w

≤ c. Thus, T is a contraction under the ∥ ⋅ ∥
w

norm.
We now show that scalars y

1

, y
2

, . . . , y
m

exist such that the
above assumptions hold. Let y

0

= 0, y
1

= 1, and suppose that
y
1

, y
2

, . . . , y
k

have been chosen. If ✏ = 1, we choose y
k+1 =

y
k

+ 1. If ✏ < 1, we choose y
k+1 to be y

k+1 = 1

2

(y
k

+M
k

)
where M

k

=min

1≤i≤k �yi + ✏

1−✏(yi − yi−1)�.
Since M

k+1 =min

�M
k

, y
k+1 + ✏

1−✏(yk+1 − yk)�, by induc-
tion we have that for all k, y

k

< y
k+1 < Mk+1, and thus one

can construct the required sequence.
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